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In the real world all events are connected. There is a hidden network of dependencies that governs
behavior of natural processes. Without much argument it can be said that, of all the known data-
structures, graphs are naturally suitable to model such information. But to learn to use graph data
structure is a tedious job as most operations on graphs are computationally expensive, so exploring fast
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Accepted 29 November 2017 machine learning techniques for graph data has been an active area of research and a family of algorithms
called kernel based approaches has been famous among researchers of the machine learning domain. With
Keywords: the help of support vector machines, kernel based methods work very well for learning with Gaussian
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processes. In this survey we will explore various kernels that operate on graph representations. Starting
from the basics of kernel based learning we will travel through the history of graph kernels from its first

Graph similarity appearance to discussion of current state of the art techniques in practice.
Isomorphism © 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Information has always been in the primary focus of researchers
in the field of computer science. In our world, most of the available
information is represented as networks of meaningfully connected
data elements. These connections can signify some sort of interde-
pendence or portray some contextual significance. This relational
aspect of information is one of the main challenges for researchers.
In this survey will be explored the utility of various graph kernels
in this domain of relational information, but before we move on to
the details of graph kernels, let us first understand the importance
of “graphs” and “kernels” in the field of artificial intelligence. One
of the primary tasks is sensible representation of such relational
data, so that they could be used to perform machine learning tasks
such as classifications, sequence predictions, density estimations
and so on.

Information is mainly stored using data structures for comput-
ers to process them. While there are many data structures avail-
able, the most generic format is a graph. All other data structures
are simply some sort of specializations of a graph. As we know,
graphs are characterized by their network of nodes connected
by edges. Similarly, natural information in general can be broken
down to smaller elements that can have some sort of semantic
connection hence, this property of graph makes it most suitable
for representing relational information. So, the first step of graph
based learning is to actually represent the information in the form
of a graph. Once that is done the second step is the learning part.

The most straightforward technique for learning is to extract
meaningful features from a sample that uniquely predicts its na-
ture. However, that is not always feasible given the dynamic na-
ture of real world problems. Problems can be so complicated that
manually extracting features can be really hectic and sometimes
humanely impossible. Data in its raw form is not suitable for
computational operations. A consistent input space is needed to
represent the data in its actual form. The key idea behind finding
features is to move the sample from the input space to another
dimension where similar samples will be mapped in close proxim-
ity while distance between dissimilar samples will be significantly
higher. Another branch of machine learning, namely kernel based
learning, views the problem from a different perspective. If we can
find some metric to map this similarity between samples we can
directly map them onto the feature dimension without actually
having to learn the features themselves. Another way to explain
this is to approximate the nature of the probability distribution of
the real world process, also know as the Gaussian process, so that
the similar samples stay in close proximity and vice versa. This
new dimension is also called an Hilbert space. The entire goal of
kernel based learning is to map the available sample space into a

suitable Hilbert space. Once we know the Gaussian distribution,
also termed as the posterior, it will be much easier to calculate
the similarity among samples. Machine learning dived into a new
paradigm through the introduction of a special function referred to
as a kernel function which can directly map the input space to such
feature dimensions. Throughout the next chapters, we will look
into details regarding definitions, mathematical concepts and old
and modern research works surrounding the application of kernels
to the field of graph theory.

As we finish the introductory section we will find our motiva-
tion to study more about this domain in next section. Section 3
introduces us to the preliminary concepts of some Gaussian Pro-
cesses, Kernel based Machine Learning, and Graph Theory. This
is absolutely necessary for understanding the concepts of various
graph kernels. As we move on to the fourth section, we will discuss
the core concepts of graph kernels, starting from the earliest point
in the history of research where the first idea of structural kernels
was conceived and slowly moving through time to finally analyze a
couple of state of the art technologies. Utmost effort has been made
to keep all explanation as simple as possible while maintaining
enough mathematical formulation to ensure logical clarity.

2. Motivation

Graphs provide one the most generic data structures for repre-
senting information. Philosophically speaking a graph represents a
network of relationships among objects. All real world phenomena
can be interpreted as a system with various components that work
in tandem. These relations and interdependence connect these
components to form a complex network. Another interpretation
may be all real world objects or events can either be described as
a network or can be considered to be a part of a larger network.
Philosophical arguments have been made in favor of graphs as the
most ideal data structure to represent the world in the language of
mathematics [1].

In computational terms it has already been mentioned that
graph are the most generic form of data structure as all common
datatypes can simply be referred to as an instance of a graph. For
example, a scalar or a constant can be treated as single node graph,
and array or matrix can be seen as a graph where each nodes
represent an index in the array and their adjacency is represented
by an edge. Stacks and queues have similar structure but with
limitation of insertion and deletion property of the nodes. A time
series can be modeled by representing time stamps as nodes and
connecting each stamp with an edge to the next one.

So, with all this said, the real question is why graphs are not
being used as the most common data structure for decades? The
simple answer is that handling graphs is complicated. On one hand
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