
Computer Science Review 27 (2018) 135–153

Contents lists available at ScienceDirect

Computer Science Review

journal homepage: www.elsevier.com/locate/cosrev

Survey on hardware implementation of random number generators
on FPGA: Theory and experimental analyses
Mohammed Bakiri a,b,*, Christophe Guyeux a, Jean-François Couchot a,
Abdelkrim Kamel Oudjida b

a Femto-ST Institute, DISC Department, UMR 6174 CNRS, University of Bourgogne Franche-Comté, Belfort, 90010, France
b Centre de Développement des Technologies Avancées, ASM/DMN Department, Cité 20 août 1956 Baba Hassen, B. P 17, 16303, Alger, Algeria

a r t i c l e i n f o

Article history:
Received 13 December 2016
Received in revised form 7 October 2017
Accepted 18 January 2018

Keywords:
Random number generators
Field-Programmable Gate Array
Chaos
Physical security
Hardware Security
Applied cryptography

a b s t r a c t

Random number generation refers to many applications such as simulation, numerical analysis, cryptog-
raphy etc. Field Programmable Gate Array (FPGA) are reconfigurable hardware systems,which allow rapid
prototyping. This researchwork is the first comprehensive survey on how randomnumber generators are
implemented on Field Programmable Gate Arrays (FPGAs). A rich and up-to-date list of generators specifi-
callymapped to FPGA are presentedwith deep technical details on their definitions and implementations.
A classification of these generators is presented,which encompasses linear andnonlinear (chaotic) pseudo
and truly random number generators. A statistical comparison through standard batteries of tests, as well
as implementation comparison based on speed and area performances, are finally presented.

© 2018 Elsevier Inc. All rights reserved.

Contents

1. Background and motivation ... 136
2. Linear pseudorandom number generators.. 137

2.1. Linear Congruential Generators .. 137
2.2. Linear Feedback Shift Register generators.. 138
2.3. Look-up table optimized generators... 139
2.4. Twisted Generalized Feedback Shift Register PRNG .. 139
2.5. Cellular Automata based PRNGs.. 141

3. Non-linear pseudorandom number generators.. 142
3.1. Blum–Blum–Shub based PRNGs on FPGA... 142
3.2. Chaotic PRNG .. 142

4. True random number generators... 144
4.1. Phase-locked loop TRNGs .. 144
4.2. Ring Oscillator TRNGs .. 145
4.3. Self-Timed Ring TRNG.. 145
4.4. Metastability TRNG .. 145

5. Experimental results and hardware analysis .. 146
5.1. Methodology... 146
5.2. Hardware comparison.. 147

6. Statistical test analysis.. 149
6.1. Statistical results of FPGA based RNG ... 149

7. Conclusion ... 150
References ... 150

* Corresponding author at: Femto-ST Institute, DISC Department, UMR 6174
CNRS, University of Bourgogne Franche-Comté, Belfort, 90010, France.

E-mail addresses:mbakiri@femto-st.fr (M. Bakiri), cguyeux@femto-st.fr
(C. Guyeux), couchot@femto-st.fr (J.-F. Couchot), a_oudjida@cdta.dz (A.K. Oudjida).

https://doi.org/10.1016/j.cosrev.2018.01.002
1574-0137/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.cosrev.2018.01.002
http://www.elsevier.com/locate/cosrev
http://www.elsevier.com/locate/cosrev
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cosrev.2018.01.002&domain=pdf
mailto:mbakiri@femto-st.fr
mailto:cguyeux@femto-st.fr
mailto:couchot@femto-st.fr
mailto:a_oudjida@cdta.dz
https://doi.org/10.1016/j.cosrev.2018.01.002

136 M. Bakiri et al. / Computer Science Review 27 (2018) 135–153

1. Background and motivation

Randomness is a common word used in many applications [1]
such as simulations [2], numerical analysis [3], computer pro-
gramming, cryptography [4], decision making, sampling, etc. The
general idea lying behind this generic word most of the times
refers to sequences, distribution, or uniform outputs generated by
a specific source of entropy. In other words, the probabilities to
generate the same output are equal (50% to have ‘‘0’’ or ‘‘1’’). If
we take the security aspect, many cryptosystem algorithms rely
on the generation of random numbers. These random numbers
can serve for instance to produce large prime numbers which are
at the origin of cipher key construction [5] (for example, in RSA
algorithm [6], in Memory Encryption [7] or Rabin signatures [8]).
Furthermore, when the generators satisfy some very stringent
properties of security, the generated numbers can act as stream
cyphers in symmetric cryptosystems like the one-time pad, proven
cryptographically secure under some assumptions [9]. Randomiza-
tion techniques are especially critical since these keys are usually
updated for each exchanged message. Even if an adversary has
partial knowledge about the randomgenerator, the behavior of this
latter should remain unpredictable to preserve the overall security.

From a historical point of view, numerical tables and physical
devices have provided the first sources of randomness designed
for scientific applications. On the one hand, random numbers were
extracted from numerical tables like census reports [10], mathe-
matical tables [11] (like logarithm or trigonometric tables, of inte-
grals and of transcendental functions, etc.), telephone directories,
and so on. On the other hand, random numbers were extracted
also from some kind of mechanical or physical computation like
the first machine of Kendall and Babington-Smith [12], Ferranti
Mark 1 computer system [13] that uses the resistance noise as a
physical entropy to implement the random number instruction in
the accumulator, the RAND Corporation [14] machine based on an
electronic roulette wheel, or ERNIE (Electronic Random Number
Indicator Equipment [15]), which was a famous random number
machine based on the noise of neon tubes and used inMonte Carlo
simulations [16,17].

These techniques cannot satisfy today’s needs of randomness
due to their mechanical structure, size limitation when tables
are used [11], and memory space. Furthermore, it may be of im-
portance to afford to reproduce exactly the same ‘‘random se-
quence’’ given an initial condition (called a ‘‘seed’’), for instance
in numerical simulations that must be reproducible — but physical
generation of randomness presented above does not allow such a
reproducibility.With the evolution of technologies leading to com-
puter machines, researchers start searching for low cost, efficient,
and possibly reproducible Random Number Generators (RNGs).
This search historically began with John von Neumann, who pre-
sented a generation way based on some computer arithmetic op-
erations. Neumann generated numbers by extracting the middle
digits from the square of the previously generated number and
by repeating this operation again and again. This method called
mid-square is periodic and terminates in a very short cycle. There-
fore, periodicity and deterministic outputs that use an operator
or arithmetic functions are the main difference with the earlier
generators. They are known in literature as ‘‘pseudorandom’’ or
‘‘quasirandom’’ number generators (PRNGs), while circuits that use
a physical source to produce randomness are called ‘‘true’’ random
number generators (TRNGs).

In most cases a random number generator algorithm can be
defined by a tuple (S, f , g , U , x0), in which S is the state space of the
generator,U is the randomoutput space, f : S → S is the transition
mapping function, g : S → U is the output extractor function
from a given state, and x0 is the seed [18], see Fig. 1. The random
output sequence is y1, y2, . . . , where each yt ∈ U is generated by

the two main steps described thereafter. The first step applies the
transition function according to the recurrence xt+1

= f (xt) ,where
f is an algorithm in the PRNG case and a physical phenomenon
in the TRNG one. Then, the second step consists in applying the
function generator to the new internal state leading to the output
xt , that is, yt = g(xt). The period of a PRNG is theminimumnumber
of iterations needed to obtain twice a given output (a PRNG being
deterministic, it always finishes to enter into a cycle).

As stated previously, the old hardware manner to build such
RNGs was to use a mechanical machine or a physical phenomenon
as entropy source, which can thus be based on noise [19], metasta-
bility (frequency instability [20]), semiconductor commercial or
industrial component circuit (PLL [21], amplifier, inverter, . . .), or
a variation in the CMOS/MEMS process technologies (transistor).
In spite of the quality of the generated randomness, most of these
techniques are however, either slowprocesses (i.e, extracting noise
from a component) or costly (e.g., extracting or measuring noise
may require specific equipment like an oscilloscope). All these
previous drawbacks are the motivation behind the development
of hardware generators based on a software design. The latter con-
sist of developing deterministic algorithms by targeting a specific
hardware system, like a Field Programmable Gate Array (FPGA),
before automatically deploying it on the hardware architecture by
using ad hoc tools.

FPGA devices are reconfigurable hardware systems. They allow
a rapid prototyping, i.e., explore a number of hardware solutions
and select the best one in a shorter time. The design methodology
on FPGA relies on the use of aHighDescription Language (i.e, Verilog,
VHDL, or SystemC) and a synthesis tool. Because of this, FPGA
has become popular platforms for implementing random gener-
ators or complete cryptographic schemes, due to the possibility to
achieve high-speed and high-quality generation of random. The
general architecture of a FPGA presented in Fig. 2 is based on
LCA (Logic Cell Array), which is composed of three parts, namely:
Configurable Logic Block (CLB) [22], Input Output Block (IOB), and
interconnect switches. FPGA could additionally includemore com-
plex components like a Digital Signal Processing (DSP), a Random
AccessMemory (RAM), aDigital ClockManager (DCM), or an Analog–
Digital Converter (ADC/DAC). The nomination of the internal blocks
depends on the FPGA vendors (Xilinx, Altera, Actel . . .) even they
have a similar functionality. The CLB structure is mainly based on
Look-Up Tables (LUTs [23]), additionally with a Flip-Flop and some
multiplexers. A K -input LUT is a 2K

× 1-bit memory array based
on a truth table of K -bits inputs. These later can executes any logic
functions as XOR/ADD/SHIFT. . .

Different implementations of RNG on FPGA have diverse char-
acteristics. First of all, does it provide true random or pseudoran-
dom numbers? In the second reproducible case, which algorithm
is implemented? The next characteristic is the way each block is
deployed on the FPGA, namely by computing or in a hardware
manner. For instance, for a polynomial division, there is a choice
between look-up table in software and a hardware shift register.
Furthermore, the quality of the FPGAmodel that implements a ran-
dom number generator can be evaluated according to many crite-
ria. In a statistical perspective, the output has to be verified against
some well-known test suite like the NIST [24], DieHARD [25], or
TestU01 [26] ones. From the hardware perspective, one objective is
to provide the highest frequency per randomly generated bit with
less FPGA hardware resources (CLB, IOB, . . .).

This article surveys a large set of selected hardware implemen-
tations of random number generators on FPGA. Both pseudoran-
dom and true random generators are investigated, while linear
and non-linear generators are discussed in the PRNG case. Each
approach is explained in details, and a discussion on the choices
of both implementations and generations are systematically given.
Performance with respect to frequency, area size, weaknesses,

Download English Version:

https://daneshyari.com/en/article/6891668

Download Persian Version:

https://daneshyari.com/article/6891668

Daneshyari.com

https://daneshyari.com/en/article/6891668
https://daneshyari.com/article/6891668
https://daneshyari.com

