
Please cite this article in press as: R. Dowsley, et al., A survey on design and implementation of protected searchable data in the cloud, Computer Science Review (2017),
http://dx.doi.org/10.1016/j.cosrev.2017.08.001.

Computer Science Review () –

Contents lists available at ScienceDirect

Computer Science Review

journal homepage: www.elsevier.com/locate/cosrev

A survey on design and implementation of protected searchable data
in the cloud
Rafael Dowsley a, Antonis Michalas b,*, Matthias Nagel c,*, Nicolae Paladi d,*
a Cryptography and Security Research Group, Department of Computer Science, Aarhus University, Aarhus, Denmark
b Cyber Security Group, Department of Computer Science, University of Westminster, London, UK
c Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
d Security Lab, SICS Swedish ICT, Kista, Sweden

a r t i c l e i n f o

Article history:
Received 29 November 2016
Received in revised form 9 August 2017
Accepted 14 August 2017
Available online xxxx

Keywords:
Searchable encryption
Security
Cloud computing
Cloud storage

a b s t r a c t

While cloud computing has exploded in popularity in recent years thanks to the potential efficiency
and cost savings of outsourcing the storage and management of data and applications, a number of
vulnerabilities that led to multiple attacks have deterred many potential users.

As a result, experts in the field argued that newmechanisms are needed in order to create trusted and
secure cloud services. Suchmechanisms would eradicate the suspicion of users towards cloud computing
by providing the necessary security guarantees. Searchable Encryption is among the most promising
solutions—one that has the potential to help offer truly secure and privacy-preserving cloud services.
We start this paper by surveying the most important searchable encryption schemes and their relevance
to cloud computing. In light of this analysis we demonstrate the inefficiencies of the existing schemes and
expand our analysis by discussing certain confidentiality and privacy issues. Further, we examine how to
integrate such a scheme with a popular cloud platform. Finally, we have chosen – based on the findings
of our analysis – an existing scheme and implemented it to review its practical maturity for deployment
in real systems. The survey of the field, together with the analysis and with the extensive experimental
results provides a comprehensive review of the theoretical and practical aspects of searchable encryption.

© 2017 Elsevier Inc. All rights reserved.

Contents

1. Introduction... 2
1.1. Our contribution... 3
1.2. Organization ... 3

2. Why searchable encryption squarely fits the cloud ... 3
3. General model of searchable encryption... 4
4. Existing approaches .. 5

4.1. Two-Layered encryption scheme .. 5
4.2. (Forward) index approach ... 5
4.3. Inverted index approach.. 5

4.3.1. Achieving dynamicity using a deletion array ... 6
4.3.2. Achieving dynamicity by learning the inverted index on-the-fly ... 6

4.4. Keyword red–black tree... 7
4.5. Dictionary entry per combination of file and keyword ... 7
4.6. Hierarchical structure of logarithmic levels ... 8
4.7. Blind storage ... 8
4.8. Extensions to more complex queries and models ... 8

5. Privacy issues .. 8
6. Efficiency ... 9
7. Openstack .. 9

7.1. Architectural overview .. 9

* Corresponding authors.
E-mail addresses: rafael@cs.au.dk (R. Dowsley), a.michalas@westminster.ac.uk (A. Michalas), matthias.nagel@kit.edu (M. Nagel), nicolae@sics.se (N. Paladi).

http://dx.doi.org/10.1016/j.cosrev.2017.08.001
1574-0137/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.cosrev.2017.08.001
http://www.elsevier.com/locate/cosrev
http://www.elsevier.com/locate/cosrev
mailto:rafael@cs.au.dk
mailto:a.michalas@westminster.ac.uk
mailto:matthias.nagel@kit.edu
mailto:nicolae@sics.se
http://dx.doi.org/10.1016/j.cosrev.2017.08.001

Please cite this article in press as: R. Dowsley, et al., A survey on design and implementation of protected searchable data in the cloud, Computer Science Review (2017),
http://dx.doi.org/10.1016/j.cosrev.2017.08.001.

2 R. Dowsley et al. / Computer Science Review () –

7.2. Storage protection mechanism ... 10
7.3. Searchable encryption in openstack ... 10

8. Recommendation for implementation .. 10
9. Experimental results... 11

9.1. Preliminary remarks .. 11
9.2. Methodology... 11
9.3. Test 1: building the blind storage system... 12
9.4. Test 2: indexing and uploading documents ... 12
9.5. Test 3: searching... 12
9.6. Summary of the implementation report .. 12

10. Conclusion ... 13
References ... 13

1. Introduction

In recent years we have witnessed an astonishing increase in
the offer of cloud computing solutions. Leveraging savings through
large scale optimizations and reduction of wasted resources (in-
active computer time, unused hardware space, etc.), this business
model offers clear economic advantages. Along with the continu-
ous increase in the amount of data, this provides a strong incentive
for both organizations and private users to opt for storing their data
with cloud service providers (CSPs). However, this trend raises a
security issue, since many clients want to keep their files confi-
dential. The solution may be to encrypt the files before sending
them to the CSP, but there are two seemingly contradictory goals
that an encryption scheme should achieve in order to be useful in
this scenario. On one hand, the encryption must satisfy a strong
notion of security in order to keep the data hidden from the
CSP. On the other hand, the scheme should allow the clients to
continue performing their operations efficiently, i.e. with time and
computational costs comparable to the ones for locally stored files.
Searching often a quintessential requirement for many clients. It
is therefore essential to develop and employ encryption schemes
that allow for efficient searching of the data stored in the cloud; if
the clients have to download the entire data set and perform the
search locally, then the scheme is completely impractical.

Searchable Encryption (SE) is an enhanced encryption tech-
nique that allows encryption while enabling search for keywords
in the encrypted data (as it would be possible in the plaintext).
Its quintessential application is cloud storage. Using searchable
encryption should enable a CSP – with the help of a search token
sent by the client – to locally perform some operations and then
send the relevant data to the client. The relevant data should on
one hand contain thematching documents (i.e. the documents that
contain the searched keyword), while on the other hand its size
should be not much larger than that of the matching documents
(i.e. the server cannot simply transfer a large part of the database
to the client on every query). Of course the CSP should not learn
the keyword that is being searched or the search query, otherwise
he is learning partial information about the documents.

Searchable encryption clearly displays trade-offs between ef-
ficiency, functionality and security. From an efficiency point of
view, it is desirable to reduce as much as possible the number of
operations performed by the server during a search. It is also highly
important to make these operations parallelizable and increase
their locality (in order to improve I/O performance), in order to
improve the search time. From the functionality point of view, one
important parameter is the query expressiveness. An SE scheme
should support as powerful queries as possible, thus increasing
the usefulness of the scheme to the clients. Other important pa-
rameters are whether a single or multiple clients should be able
to write data to the cloud and whether a single or multiple clients
should be able to read the data. Additionally, schemes for practical
applications should be dynamic, i.e. they should allow database

updates without additional leakage. From a security point of view,
it is essential to reduce the leakage caused by all operations as
much as possible.

Depending on the requirements of the desired scheme, it pos-
sible to use either public-key cryptography or symmetric-key
cryptography. However, often searchable public-key encryption
schemes with good security guarantees do not scale well because
they have search timewhich is linear in the number of documents.

Symmetric searchable encryption was introduced by Song
et al. [1], who presented a scheme that allowed linear search time
(in the number of documents) by the server. Unfortunately their
scheme does not achieve a strong notion of security: it has no secu-
rity guarantees related to the leakage that can be caused by the use
of the search tokens that are given to the server in order to allow
the search to be performed on the server side. Goh [2] introduced
the approach of using secure indexes in order to achieve linear
search time with stronger security guarantees. Unfortunately the
search time of this approach is inherently linear in the number
of files. Curtmola et al. [3] presented the first secure scheme with
sub-linear search time using an inverted index approach (uses the
keywords as index) and also introduced a strong security model
for searchable encryption which became the standard security
notion for searchable encryption in the last several years. The
inverted index approach is quite efficient and is in fact optimal for
the number of operations that the server has to perform during
a search, which led to it being used in many subsequent works
(e.g., [4–6]). One limitation of this method is that it is inherently
sequential, preventing it from taking advantage of parallelism to
improve performance. Another issue is that it is not well-suited for
dynamic databases, which is the case of most applications. Recent
works made progress in the direction of dynamic [5,7–10] and
parallel [7,8,11] schemes.

Symmetric searchable encryption perfectly fits the scenario
of a single user writing to/reading from the database. However,
there is a generic construction that combines a singlewriter/reader
schemewith broadcast encryption in order to obtain a scheme that
supports multiple readers [3]. One additional issue in this case is
revocation: a revoked user should not be able to perform searches
after the revocation has occurred.

In terms of query expressiveness, most symmetric searchable
encryption schemes focus on single equality queries. Some recent
works [11,12] demonstrated that it is possible to extend data
structures for single keyword symmetric searchable encryption
in order to deal with more complex queries, such as conjunctive
queries for keyword combinations and general Boolean queries.

Public-key searchable encryption was introduced by Boneh
et al. [13]. It allows multiple clients to encrypt data into the
database, which can be decrypted by the data owner that has the
secret-key. Other solutions allow conjunctive, subset and range
queries [14]. The efficiency of these schemes is limited by the
cost of public-key operations. Another problem of the proposed

Download English Version:

https://daneshyari.com/en/article/6891678

Download Persian Version:

https://daneshyari.com/article/6891678

Daneshyari.com

https://daneshyari.com/en/article/6891678
https://daneshyari.com/article/6891678
https://daneshyari.com

