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a b s t r a c t

We present and analyze an interior penalty discontinuous Galerkin Isogeometric Anal-
ysis (dG-IgA) method for the biharmonic equation in computational domain in Rd with
d = 2, 3. The computational domain consists of several non-overlapping sub-domains
or patches. We construct B-Spline approximation spaces which are discontinuous across
patch interfaces. We present a priori error estimate in a discrete norm and numerical
experiments to confirm the theory.
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1. Introduction

In this paper, we consider the fourth-order Dirichlet boundary value problem: find u : Ω → R such that

∆2u = f in Ω, u = g0, and n · ∇u = g1 on ∂Ω, (1)

where n is the external unit normal vector to the boundary ∂Ω, the bi-Laplacian operator ∆2
:= ∆∆ with ∆ as the Laplace

operator, f is a given source function, g0, g1 are boundary data and Ω ⊂ Rd, d = 2, 3 is a bounded Lipschitz computational
domain with the boundary ∂Ω. We assume that the domain Ω is generated by Computer Aided Design (CAD) system and
represented by a single or multiple patches which are images of the parameter domain (0, 1)d by spline or NURBS maps.

The model problem (1) is an example of a fourth-order elliptic problem occurring usually in various model of computa-
tional mechanics such as the Bernoulli–Euler beam and the Poisson–Kirchhoff thin plate theories [1,2]. Several numerical
solution techniques for the fourth-order problem have been studied including conforming and non-conforming finite
element methods (FEM) and mixed finite element methods see, e.g. [3,4]. The construction of conforming methods for
such problems require finite element spaces of H2(Ω). Such H2-conforming methods are known to require continuously
differentiable (i.e. C1-) piece-wise polynomials on the elements. This is however known to be considerably difficult to
construct practically. Examples of such conforming finite elements for such a problem are the Argyris element which uses
polynomials of degree p = 5 for triangular elements, the reduced Hsieh–Clough–Tocher (rHCT) or Hsieh–Clough–Tocher
(HCT) element also called macro-elements, which uses cubic polynomials for sub-partition triangular elements and the
Bogner–Fox–Schmit elementwhich uses bi-cubic functions for rectangular elements . For the non-conforming finite element,
a typical example for solving such amodel problem is theMorley element which uses piece-wise quadratic polynomials, see
e.g. [3].
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Alternatively, the fourth-order partial differential equation (PDE) can be solved by using the interior penalty discontin-
uous Galerkin finite element methods. The interior penalty methods date back to [5] where Douglas and Dupont combined
conforming continuous finite element with penalty terms which led to consistent schemes to derive a priori error estimates.
In [6], the continuousGalerkin (cG), discontinuousGalerkin (dG) and stabilization techniques combined in solving the fourth-
order elliptic problems and applied to thin plate bending theory problems in structural mechanics and to a strain gradient
theory problem. The continuous/discontinuous Galerkin method has further been applied to the biharmonic problem on
closed surfaces [7]. A continuous interior penalty hp-version of the interior penalty discontinuous Galerkin finite element
method for fourth-order elliptic problems has also been studied, see, e.g., [8,9]. Finally, wemention that a continuous interior
penaltymethod for fourth order elliptic boundary value problems including Kirchhoff plates on polygonal domains has been
analyzed in [10–12]

In most recent times, isogeometric analysis (IgA) has been proposed to approximate solutions of PDEs, see, e.g. [13]. The
IgA uses the same class of basis functions for both representing the geometry of the domain and approximating the solution
of the PDEs. Furthermore, the IgA has (p − 1)-continuous differentiable basis i.e. C (p−1) with degree p ≥ 1 functions which
makes it an ideal scheme for the approximation of higher order PDEs including the biharmonic problem (1), see, e.g. [14].

In this paper, wewill present a priori error estimate for multi-patch interior penalty discontinuous Galerkin isogeometric
analysis (dG-IgA) for biharmonic equation on conforming patches with matching meshes. The dG-IgA or Nitsche coupling
method has been introduced and analyzed for second order elliptic problems, see e.g., [15–19]. Following the monograph
of Di Pietro and Ern [20], our analysis will require three main ingredients namely; discrete stability, consistency and
boundedness of the discrete bilinear form. Using approximation estimates for h-refined IgA meshes from [13] and [14],
we will then present a priori error estimate in an appropriate discrete norm.

The rest of the paper is organized as follows. In Section 2, we introduce function spaces, weak formulation and the
isogeometric analysis framework. Section 3 involves the derivation of the interior penalty discontinuous Galerkin scheme.
Then, in Section 4, we introduce a discrete NURBS space Vh and a discrete norm ∥ · ∥h and prove the coercivity of the bilinear
form. The boundedness of the bilinear form is asserted in a product space Vh,∗ × Vh, where we will need another discrete
norm ∥ · ∥h,∗ defined on the vector space Vh,∗. The error analysis of the dG-IgA scheme is presented in Section 5. In Section 6,
we present and discuss numerical experiments to confirm our theoretical results. Finally, we draw some conclusions and
discuss future works in Section 7.

2. Preliminaries

Let Ω be a bounded Lipschitz domain with boundary ∂Ω . We introduce the Sobolev space Hs(Ω) := {v ∈ L2(Ω) :

Dαv ∈ L2(Ω), for 0 ≤ |α| ≤ s}, where L2(Ω) denote the space of square integrable functions and let α = (α1, . . . , αd) be
a multi-index with non-negative integers α1, . . . , αd, |α| = α1 + · · · + αd, Dα

:= ∂ |α|/∂xα, and associate with the Sobolev

space Hs(Ω) the norm ∥v∥Hs(Ω) =

(∑
0≤|α|≤s∥D

αv∥
2
L2(Ω)

)1/2
see, e.g. [21].

The variational formulation of the biharmonic problem (1) reads: find u ∈ VD such that

a(u, v) = ℓ(v), ∀v ∈ V0, (2)

where the bilinear and linear forms are given by

a(u, v) =

∫
Ω

∆u∆v dx and ℓ(v) =

∫
Ω

f v dx, (3)

and the hyperplane and test space given by VD := {v ∈ H2(Ω) : v = g0, n · ∇v = g1 on ∂Ω} and V0 := {v ∈ H2(Ω) :

v = 0, n · ∇v = 0 on ∂Ω}. The existence and uniqueness of the variational problem (2) follows the well-known
Lax–Milgram lemma see e.g. [3].

2.1. B-spline and isogeometric analysis

We refer the reader to [22] for detailed study on B-splines or NURBS based Galerkin methods. For the unit interval
Ω̂ = [0, 1], we define a vector 4 =

{
0 = ξ1, . . . , ξn+p+1 = 1

}
with a non-decreasing sequence of real numbers in the

parameter domain Ω̂ = [0, 1] called a knot vector. Given 4, p ≥ 1, and n the number of basis functions, the univariate
B-spline basis functions are defined by the Cox–de Boor recursion formula as follows:

B̂i,0(ξ ) =

{
1 if ξi ≤ ξ < ξi+1,

0 else,

B̂i,p(ξ ) =
ξ − ξi

ξi+p − ξi
B̂i,p−1(ξ ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
B̂i+1,p−1(ξ ), (4)

where a division by zero is defined to be zero. We note that a basis function of degree p is (p − m) times continuously
differentiable across a knot value with the multiplicitym. If all internal knots have the multiplicitym = 1, then B-splines of
degree p are globally (p − 1)-continuously differentiable.
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