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a b s t r a c t

The lumped mass method is extended to the surface finite element method for solving
the surface parabolic equations. The main purpose of the proposedmethod is to overcome
the difficulty that the surface finite element method does not guarantee the maximal
principle of the surface heat equation. Optimal error estimates are given for the semi-
discrete and fully-discrete schemes of the proposed method respectively. The maximum
principle is shown for surface heat equations and its preservation by the lumped mass
surface finite element under the Delaunay type triangulation. Moreover, some results of
positivity and monotonicity are derived for nonlinear parabolic equations. Finally some
numerical experiments are displayed to illustrate the validity and numerical performance
of the proposed method.
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1. Introduction

1.1. Motivation

Nowadays, the partial differential equationmodels on surfaces are constructed for many applications inmaterial science,
mathematical biology and the mathematics of images where the surface parabolic equations are often applied to describe
the heat transfer and phase-transfer on ultra-thin materials and solid surface [1–6]. In real application, to solve surface
partial differential equations analytically is more difficult than the work on general 2D/3D domains since the domains of the
equations are curved. Hence, the surface finite element method (FEM) [2,3,7] was proposed to solve the surface equations
numerically.

Comparing the surface FEMwith the standard FEM for parabolic equations, they have the same shortage in preserving the
maximum principle of the homogeneous parabolic equations (heat equation), see [8] and examples in Section 3.2. The lack
of a discrete maximum principle in the standard method is mainly caused by the nondiagonal mass matrix. For the standard
FEM, a modified method called the lumpedmass FEMwas provided and analysed in terms of the error estimates [8–14] and
the maximum principle preservation [8,11,12,15]. The main idea of lumped mass method is to modify the mass matrix of
standard FEM to a diagonal matrix whose diagonal elements are the row sums of original mass matrix. This method was
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shown to be second-order in space, and the maximum principle can be guaranteed for the heat equation. In this paper, we
extend the lumped mass method to the surface parabolic equations, and show the error estimates and maximum principle
preservation.

The layout of the paper is as follows. In the rest of Section 1, we introduce some basic concepts of surface parabolic
equations and the surface FEM. In Section 2, the lumped mass FEM is proposed for surface parabolic equations and the
related error estimates for semi-discrete, backward Euler and Crank–Nicolson schemes are shown respectively. In Section 3,
firstly, themaximumprinciple is shown for the homogeneous parabolic equations on bounded surfaces. Then some examples
are given to illustrate that the maximum principle cannot be guaranteed by the surface FEM. Moreover, under the Delaunay
type triangulation, the maximum principle guaranteed by the lumped mass FEM is shown. At the end of the section, some
results of maximum principle, positivity and monotonicity for nonlinear parabolic equations are derived. In Section 4, some
numerical experiments are given to illustrate numerical performance of the proposedmethod including tests of convergence
and maximum principle. Finally, some conclusions are drawn.

1.2. Finite element method for surface parabolic equations

LetΓ be a compact, connected and oriented hypersurface contained in boundeddomainΩ ⊂ R3 with ∂Γ empty. Suppose
that there exists a function φ ∈ C2(Ω) such that Γ can be expressed as a zero-level set function form, that is,

Γ = {x ∈ Ω | φ(x) = 0}.

The normal vector field of Γ is defined as

n(x) =
∇φ(x)
|∇φ(x)|

= (n1, n2, n3)T,

where function φ is required to satisfy ∇φ(x) ̸= 0, ∇ denotes the standard gradient operator in R3.
Now we consider the initial value problem{

ut − ∆Γ u = f , x ∈ Γ , t ∈ (0, T ],

u|t=0 = u0, x ∈ Γ ,
(1.1)

where ∆Γ is the Laplace–Beltrami operator defined by ∇Γ · ∇Γ and ∇Γ denotes the surface or tangential gradient such that

∇Γ η(x) = ∇η(x) − ∇η(x) · n(x)n(x) = P(x)∇η(x).

The matrix P satisfies Pij(x) = δij − ni(x)nj(x) with the property P∇Γ = ∇Γ .
For solving (1.1), the first step is to choose the vertices {Xj}

Np
j=1 on Γ to generate a piecewise triangulated surface element

Γh consisting of non-overlapped and quasi-uniform triangles eh. Then the original surface is replaced by this triangulated
surface. From this step,we can get a triangulatedmesh Th = {eh}with size hwhich is themaximumdiameter of each triangle.
Then, a piecewise bijection between point a ∈ Γ and x ∈ Γh can be established by x = a(x) + d̄(x)n(a(x)) with sufficient
small h, where d̄(x) is a signed distance function satisfying |d̄(x)| = dist(x, Γ ), ∇d̄(x) = n(a(x)) and |∇d̄(x)| = 1. Hence, for
a function η defined on Γh, we can lift it onto Γ by

ηl(a) = η(x(a)), a ∈ Γ .

We can understand by ηl(x) the constant extension from Γ in the normal direction n(a(x)) and we extend the normal
constantly such that n(x) = n(a(x)). We can also define the inverse lift such that ζ−l(x) = ζ (a(x)) for a function ζ defined
on Γ .

Set p ∈ [1, ∞) and let Lp(Γ ) denote the space of functions η : Γ → R satisfying

∥η∥Lp(Γ ) =

(∫
Γ

|η|
pdA

) 1
p

< ∞.

Let Wm,p(Γ ) denote the space of functions η : Γ → R with weak tangential derivatives up to order m in Lp(Γ ). Specially,
for p = 2, we write Hm(Γ ) for Wm,2(Γ ). For any functions w, v ∈ H1(Γ ), we denote the following inner product

(w, v)Γ =

∫
Γ

wv dA and (∇Γ w, ∇Γ v)Γ =

∫
Γ

∇Γ w · ∇Γ v dA.

Similarly, we can define norm, inner product, and other quantities in the discrete case such that the function spaces L2(Γh)
and H1(Γh) with the inner products (W , V )Γh and (∇ΓhW , ∇ΓhV )Γh for any functionsW , V ∈ H1(Γh) respectively.

In the numerical analysis framework of the surface finite element method, the following notations and lemmas are
important to establish the stability and error analyses. Let nh be the normal vector of Γh, which is constant on each triangle
eh. Using a chain rule for differentiation, we have

∇Γhη(x) = Ph(x)∇ηl(a(x)) = Ph(x)
(
I − d̄(x)H(x) − nT(a(x))n(a(x))

)
∇ηl(a(x))

= Ph(x)(I − d̄(x)H(x) − nT(x)n(x) + d̄(x)(H(x)n(x))Tn(x))∇ηl(a(x))
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