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a b s t r a c t

In this paper we develop an adaptive finite element method for elliptic problems. First, we
assume that in each subdomain the norm of the approximation error at the current mesh
configuration is bounded by the norm of the approximation error obtained at the previous
mesh configuration, for some norm Hs. Then an a-posteriori error estimator is designed
based on the approximate solution correction between the solution on the last two mesh
configurations. Based on this new error estimator, the element-wise refinement strategy
in each subdomain is provided for a given tolerance.

A discussion on the choice of the coefficients in the assumption is given for different
norm spaces and for different degrees of finite element family. Four 2D numerical bench-
mark examples of different domains and two 3Dnumerical benchmark examples are tested
to demonstrate the robustness of our method. When possible, our numerical results are
also compared to corresponding results from existing methods. All the results show that
the proposed method is robust and efficient in terms of the number of degrees of freedom.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The adaptive finite element method for solving elliptic problems has been studied for many years due to the advantage
of a significant reduction of the computational cost within a pre-established tolerance [1–3]. In addition, this method can be
easily incorporatedwith domain decomposition techniques to improve the efficiency of the solver, see for example [4–7]. The
development of adaptive finite element method relies on two important techniques, namely the adaptive mesh refinement
(AMR) strategy and the error estimator. The AMR strategy can be broadly classified into three categories: h-type refinement,
p-type refinement and r-type refinement. The h-type refinement is to refine the meshes in the region where the error is
relatively large whereas coarsen the meshes in the region where the error is relatively small [8,9]. The p-type refinement,
instead, increases the order of the polynomial functions instead of directly refining the mesh [10,11]. The r-type refinement
is to move the nodes to increase the mesh density in the region of interest without changing the number of nodes or cells
present in a mesh or changing the connectivity of a mesh [12–14]. Some hybrid refinement strategies are also developed
such as hp-type and hr-type refinements, see [15–17].

The above AMR strategies are performed according to the local error indicator, called error estimator, which decides
whether the local mesh should be refined or not. There exist two types of error estimators: the a-priori error estimator and
a-posteriori error estimator. The a-priori error estimator provides the error estimate by using well-chosen approximation
of the exact solution but not an actual error estimate for a given mesh. It is not so convenient to apply this method
to complicated problems for which little information about exact solutions is provided resulting in being hard to seek
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appropriate approximation of the exact solutions. In contrast, the a-posteriori error estimator uses the approximate solution
itself to construct the error estimate which can be directly computed based on the approximate solution on a given
mesh. Thus due to its reliability and ease of implementation, after the pioneering work of Babuška and Rheinboldt [18],
theorems andmethods of the a-posteriori error estimator have beendeveloped extensively, see [19–23]. The a-posteriori error
estimator can also be classified into three classes, namely explicit error estimators, implicit error estimators, and recovery
based error estimators, see [20] and the references therein.

In this work, we use the h-type and local midpoint as refinement strategy. We develop a new a-posteriori error estimator
as local error indicator for the refinement of the mesh. The estimator is based on the assumption that in each subdomain the
norm of the new approximation error at the current mesh configuration is bounded by the norm of the approximation error
at the previous mesh configuration, for some norm Hs. It may be the case that at a given level and for some elements, the
approximation error ismuch smaller than the required given tolerance. In this case, an over-conservativemesh configuration
is obtained. Instead of coarsening the regions that have been overly refined, we prefer to ease the tolerances in the regions
that have to be refined again, so that the global tolerance remains the same. A series of benchmark tests are used to validate
the robustness and efficiency of the algorithm. The new adaptive finite element method is implemented in FEMuS [24], an
open-source finite element C++ library built on top of PETSc [25].

The outline of this paper is organized as follows. First, we introduce the domain discretization and define some notations.
Then, the new a-posteriori error estimator is presented. Based on the error estimator, two new theorems are proven. These
give an effective way to define the element-wise refinement strategy in each subdomain for any given tolerance. Then,
multiple numerical benchmark examples are tested and their results are discussed. Finally, some conclusions are made.

2. Error estimator for elliptic problems

We consider the Poisson problem as the model problem. This is an example of elliptic problem. The Poisson equation is
given

− ∆u = f , in Ω, (1)
u = g, on ∂Ω, (2)

on a bounded domain Ω ⊂ Rd with d = 2, 3, where f is the source term, and g is some given boundary condition. For
nonzero Dirichlet boundary conditions, we can easily transform the problem to the case of homogeneous Dirichlet boundary
conditions defining ũ = u − h, where h is any smooth function, whose trace on the boundary is g , then

− ∆̃u = f + ∆h = f̃ , in Ω,

ũ = 0, on ∂Ω.

Thus, in the following analysis we only consider g = 0. The weak formulation of the homogeneous Poisson problem consists
of finding the weak solution u ∈ H1

0 (Ω) satisfying

(∇u, ∇v) = (f , v), (3)

for all test functions v ∈ H1
0 (Ω), where (·, ·) is the L2 inner product in Ω .

Given the finite element space Vh(Ω) ⊆ H1
0 (Ω), the approximate solution uh ∈ Vh(Ω) of the discrete weak formulation

satisfies

(∇uh, ∇vh) = (f , vh), (4)

for all test functions vh ∈ Vh(Ω).
Similarly, Neumann or mixed boundary conditions can also be specified on some part of the boundary. In this case, the

spaces for the test functions and the solution in theweak formulation should bemodified and the boundary terms are treated
again as source terms, and details can be found in [26].

2.1. Domain discretization and notation

Let Ω be a closed and bounded subset of Rd, for d = 2, 3. Let J ≥ 1 and k = 0, . . . , J . For a given coarse quasi-uniform
triangulation T0 in Ω , the mesh is uniformly refined once, to obtain the first level triangulation T1, and for k ≥ 2 it is
adaptively refined based on local error estimators. Then, for k = 2 . . . , J , nonuniform triangulations Tk cover the whole
domain.

Let {Ω l
}
J
l=1 be the collection of closed subdomains of Ω , which align with the edges of the elements in the nonuniform

triangulation TJ , such that their interior is covered only by a uniform triangulation T l obtained after l refinements. EachΩ l is
such that int(Ω i)∩ int(Ω j) = ∅, if i ̸= j, and Ω =

⋃J
l=1 Ω l. This means that {Ω l

}
J
l=1 is a cover of Ω , and that the subdomains

Ω l either do not intersect or they do on a portion of their boundaries. Notice that each Ω l can also be a union of disjoint
subdomains. Also, notice that the coarse triangulation is uniformly refined, then Ω0

= ∅ and it has been excluded in the
above. However, for generality we reintroduce it in the following.
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