ARTICLE IN PRESS

Computers and Mathematics with Applications ■ (■■■) ■■■■

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

An improved $k-\omega-\varphi-\alpha$ turbulence model applied to near-wall, separated and impinging jet flows and heat transfer

X.L. Yang^a, Y. Liu^{b,*}

- a College of Civil Engineering, Shenzhen University, Shenzhen 518060, PR China
- ^b Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

ARTICLE INFO

Article history: Received 16 December 2017 Received in revised form 13 April 2018 Accepted 15 April 2018 Available online xxxx

Keywords:
Turbulence model
Elliptic blending
Near-wall flow
Separated flow
Impinging jet flow
Convective heat transfer

ABSTRACT

A turbulence model based on elliptic blending concept, referred to as improved $k-\omega-\varphi-\alpha$ model compared against the original $k-\omega-\varphi-\alpha$ model developed previously, is developed and verified. This model consists of four governing equations. Among them the k and ω equations are based on the Wilcox's $k-\omega$ model with some modifications and improvements according to the original $k-\omega-\varphi-\alpha$ model, and the φ and α equations are extracted from the original $k-\omega-\varphi-\alpha$ model directly without any change. The improved $k-\omega-\varphi-\varphi$ α model is applied to near-wall, separated and impinging jet flows and convective heat transfer, i.e. the 2D fully developed channel flow, the 2D backward-facing step flow, the 2D impinging jet flow, and the convective heat transfer in the 2D fully developed channel flow and the 2D impinging jet flow. The computational results are compared with available DNS and experimental data and also to those computed using the original $k-\omega-\varphi-\alpha$ model and the popular Menter's SST $k-\omega$ model. It is shown that the improved $k-\omega-\varphi-\alpha$ model has better numerical stability, higher computational efficiency and more concise form than the original $k-\omega-\varphi-\alpha$ model. In addition, compared with the original $k-\omega-\varphi-\alpha$ model, the improved $k-\omega-\varphi-\alpha$ model can yield similar velocity profiles in the fully developed channel flow and step flow and friction and pressure coefficients in the step flow and very close temperature profiles in the fully developed channel flow. Moreover, it shows significant improvements on the predictions for the fluid flow and heat transfer in the impinging jet flow. As a whole, the improved $k-\omega-\varphi-\alpha$ model predicts better results than both of the original $k-\omega-\varphi-\alpha$ model and the SST $k-\omega$ model.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Accurately predicting turbulent information is of importance from practical and theoretical points of view because turbulent flows are commonly encountered in engineering applications. It is well known that the Direct Numerical Simulation (DNS) can solve directly the Navier–Stokes (N–S) equations, which are able to describe the details of turbulent motions, without any simplification. However, its huge computing capacity prevents it from being applied in real engineering problems. Alternatively, the Reynolds-Averaged N–S equations (corresponding to RANS methods) and the filtered N–S equations (corresponding to Large Eddy Simulation method, LES) are primarily utilized in practices. Although LES shows more powerful ability than RANS for turbulence simulation, especially for unsteady turbulent flows, its application range is

https://doi.org/10.1016/j.camwa.2018.04.020 0898-1221/© 2018 Elsevier Ltd. All rights reserved.

^{*} Corresponding author.

E-mail address: yang.liu@polyu.edu.hk (Y. Liu).

Nomenclature

Greek letters

 α Elliptic variable

 β , γ , β^* , β_0 Turbulence model coefficients

 δ Half width of the channel

 ε , ε_h Dissipation rate and homogeneous dissipation rate

 ω , ω_h Specific dissipation rate and homogeneous specific dissipation rate

κ Von Karman constant

 μ, ν Molecular dynamic and kinematic viscosity μ_t, ν_t Turbulent dynamic and kinematic viscosity

 Ω_{ii} Vorticity rate tensor

 φ Wall-normal turbulent anisotropy, $\varphi = \overline{v^2}/k$

 ρ Density of fluid

 $\sigma_d,\,\sigma_{d0},\,\sigma_{d1}$ Turbulence model constants $\sigma_k,\,\sigma_\omega,\,\sigma_\varepsilon,\,\sigma_{\varphi}$ Turbulent Prandtl numbers τ,τ_w Shear stress and wall shear stress θ Mean temperature of the fluid

 θ_w Wall temperature

 θ_{in} Fluid temperature at inlet θ^+ The normalized temperature ξ Turbulence model constant

Latin letters

B Width of the inlet of the jet C_f Skin-friction coefficient

 C_p Pressure coefficient c_n Specific heat of the fluid

 $\dot{C}_{\varepsilon 1}, C_{\varepsilon 1}^*, C_{\varepsilon 2}, C_{\varepsilon 2}^*, C_{\varepsilon 3}, C_{\varepsilon 4}, C_{\varepsilon 5}, C_{\mu}, C_L, C_T, C_{\eta}, C_1, C_2$ Turbulence model parameters

 C_D Cross-diffusion term D_k, D_k^t Turbulent diffusion of k

E The 'E' term

f Elliptic relaxation function

 f_k, f_ω, f_μ Damping functions f_β Additional function F_b Blending function

 G_k Production of turbulent kinetic energy

H Step height

I Turbulent intensity

k Turbulent kinetic energy or thermal conductivity of the fluid

L Turbulence length scalen Turbulence model constant

Nu Nusselt number

p Pressure or turbulence model constant

Pr Molecular Prandtl number Pr_t Turbulent Prandtl number a Heat flux

Re_H Reynolds number based on H Re_t Turbulent Reynolds number

 Re_{τ} Friction velocity based Reynolds number

S Magnitude of strain rate
S_{ij} Strain rate tensor
t Physical time
T Turbulence time scale

 T_{lim} Upper bound of the turbulence time scale

 u_i Instantaneous velocity vector u, v, w Velocities along x, y and z directions U_b Mean velocity of the bulk flow

Download English Version:

https://daneshyari.com/en/article/6891752

Download Persian Version:

https://daneshyari.com/article/6891752

<u>Daneshyari.com</u>