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a b s t r a c t

In this paper, we propose and analyze a two-grid finite element method for a class
of quasilinear elliptic problems under minimal regularity of data in a bounded convex
polygonal Ω ⊂ R2, which can be thought of as a type of linearization of the nonlinear
system using a solution from a coarse finite element space. With this technique, solving a
quasilinear elliptic problem on the fine finite element space is reduced into solving a linear
problem on the fine finite element space and solving the quasilinear elliptic problem on a
coarse space. Convergence estimates in the H1-norm are derived to justify the efficiency
of the proposed two-grid algorithm. Moreover, we propose a natural and computationally
efficient residual-based a posteriori error estimator of the two-grid finite element method
for this nonmonotone quasilinear elliptic problem and derive the global upper and lower
bounds on the error in the H1-norm. Numerical experiments are provided to confirm our
theoretical findings.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The purpose of this paper is to study the convergence and the a posteriori error estimates of the two-grid finite element
method for the following nonmonotone quasilinear Dirichlet problem{

−∇ · (a(x, u)∇u) + f (x, u) = 0, x ∈ Ω,

u = 0, x ∈ Γ ,
(1.1)

where Ω is an open bounded convex polygonal in R2 and Γ is its boundary. The smoothness requirements on a and f will
be given in detail in Section 2.

There are some important numerical results available for (1.1) with f (x, u) = f (x). The uniqueness of the classical and
weak solutions of (1.1) were established in [1] and [2], respectively. Douglas and Dupont [3] proved an optimal rate of
convergence of the finite element approximation for solving (1.1). The result in [3] was generalized in [4] to any smooth
uniformly positive definite matrix a(x, u) = (aij(x, u))2i,j=1. Milner [5] considered mixed finite element method for (1.1)
and showed an optimal rate of convergence in the Lp-norm. Similar results were obtained in [6]. Gudi and Pani [7], Bi and
Ginting [8,9] studied the a priori error estimates, two-grid algorithm and the a posteriori error estimates of discontinuous
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Galerkin method for (1.1), respectively. Chatzipantelidis, Ginting and Lazarov [10], Bergam, Mghazli and Verfürth [11], Bi
and Ginting [12] studied the a priori error estimates and a posteriori error estimates of the finite volume element method
of (1.1), respectively.

Note that in these papers cited above, in order to develop the existence, uniqueness of approximation solution, the a priori
and a posteriori error estimates, the function a and the exact solution of (1.1) are assumed to have higher smoothness. For
example, itwas assumed that a belongs to C2 and u ∈ W 2,2+ϵ(Ω), ϵ > 0, or u ∈ H2(Ω), see [3–5,7–9,13] for details. Recently,
Casas and Dhamo [14] have proved that C2 regularity of a is not necessary to establish the existence and a priori error
estimates of finite element approximation of (1.1) in the convex and non-convex planar polygonal or polyhedral domains
and only requires a local Lipschitz property of a. Moreover, Casas and Dhamo [14] proved that the exact solution of (1.1)
with minimal regularity of data is only in H3/2(Ω), see Section 2 for details.

Two-grid finite elementmethods based on two finite element spaces on one coarse and one fine gridwere first introduced
by Xu [13]-[15] for the nonsymmetric linear and nonlinear elliptic problems and these articles derived the convergence
estimates to justify the efficiency of these algorithms. Later on, the two-grid methods were investigated for solving many
other problems, for instance, Xu and Zhou [16] for eigenvalue problems, Axelsson and Layton [17] for nonlinear elliptic
problems, Dawson, Wheeler and Woodward [18] for finite difference method for nonlinear parabolic equations, Utnes [19]
for Navier–Stokes equations, Marion and Xu [20] for evolution equations, Wu and Allen [21], Chen and Chen [22] for mixed
finite element method to solve reaction–diffusion equations, Bi and Ginting [23] for the finite volume element method
for the nonlinear elliptic problems and Bi and Ginting [8] for the discontinuous Galerkin finite element method for (1.1).
Congreve and Houston [24] for the discontinuous Galerkin finite element method for quasi-Newtonian fluid flow problem,
Chen and Liu [25] for the finite volume element method for the nonlinear parabolic problems. These past works have given
an indication on the viability of the two-grid methods as an efficient technique for solving nonlinear problems of various
type.

Note that in the papers mentioned above on the two-grid algorithm for various nonlinear problems, the coefficient
function and the exact solutions of the nonlinear problems are assumed to have higher smoothness. For example, it was
assumed that the exact solution u ∈ W 2,2+ϵ(Ω), ϵ > 0, [13,23]; u ∈ W 2,∞(Ω) [18] and u ∈ H2(Ω) [20], see those paper
for details. The relaxation from higher regularity to lower regularity on the coefficient function and the exact solutions of
the nonlinear problems is a technical point of interest since the later is general and the former holds only on very favorable
cases.

In this paper, we propose and analyze the two-grid technique to solve the nonmonotone quasilinear elliptic boundary
value problem (1.1) underminimal regularity of data and u ∈ H3/2(Ω). The discretization is based on one coarse and one fine
conforming linear finite element spaces, SH and Sh, respectively, where H and h are the grid sizes for the coarse grid and fine
grid, respectively. With this technique, solving a quasilinear elliptic problem on the fine space Sh is reduced into solving a
linear problem on the fine space Sh and solving the quasilinear elliptic problem on a coarse space SH . This means that solving
a quasilinear elliptic problem is notmuchmore difficult than solving one linear problem, since dimSH ≪ dimSh and thework
for solving the quasilinear problem on the coarse grid is relatively small. Under the assumption that the mesh parameter is
sufficiently small, we show the convergence rate of the proposed two-grid algorithm in the H1-norm for u ∈ H3/2(Ω). This
assumption that the mesh parameter is sufficiently small is reasonable, which guarantees the existence and uniqueness of
the finite element approximation of (1.1), see [14] for details.

A posteriori error estimates of the finite element method have been studied extensively in the past several decades and
some important results have been achieved. We refer the reader to monographs [26–29] and [30] and references therein for
an extensive survey of the vast amount of research in this field, many of which were concentrated on linear problems.

Many authors studied the a posteriori error estimates of numerical solution of (1.1) under the higher regularity
assumptions on a, u, and f (x, u) = f (x). Bergam, Mghazli and Verfürth [11], Bi and Ginting [12] studied the a posteriori
error estimates of finite volume element method of (1.1). Bi and Ginting [9] developed the a posteriori error estimates of
discontinuous Galerkin finite element method for (1.1) under the assumption that a ∈ C2

b (Ω × R), where C2
b (Ω × R) is the

class of twice continuously differentiable functions on Ω ×R such that all derivatives of aij up to and including second order
are bounded in Ω ×R. Under the assumption u ∈ C1,ν(Ω) for some 0 < ν ≤ 1 or u ∈ W 2,∞(Ω), Demlow [31] provided two
types of computationally efficient residual-based pointwise a posteriori error estimators for gradients of piecewise linear
finite element approximations of (1.1). Liu et al. [32] derived the global postprocessing-based a posteriori error estimators
in the H1- and L2-norms of the rectangular finite element approximations of (1.1) in the case that a(x, u) = (aij(x, u))2i,j=1 is a
bounded uniformly positive definite matrix and aij ∈ C2

b (Ω ×R). Verfürth [33] presented a general framework to establish a
posteriori error estimates for the finite element solution of nonlinear elliptic problems F (u) = 0 with somewhat restrictive
regularity imposed on F , i.e., F ∈ C1(X, Y ∗) or F ∈ C(X, Y ∗) and F is amonotone operator. HereX andY are twoBanach spaces,
and ∗ denotes the dual of a Banach space. Application of this framework to (1.1) in section 6 in [33] requires a ∈ C1(Ω ×R),
and yields upper and lower bounds on the error only in theW 1,p-normwith 2 < p < 4, which does not cover the important
a posteriori error estimates in the H1-norm.

In [34], we presented an analysis of a posteriori error estimates of two-grid finite elementmethod for the general second-
order nonlinear elliptic problems under the regularity assumption that u ∈ H1

0 (Ω) ∩ W 2,2+ϵ(Ω) for some ϵ > 0. In this
paper, we further to propose a natural and computationally easy residual-based a posteriori error estimator of the two-grid
finite element method for (1.1) under minimal regularity of data and u ∈ H3/2(Ω). Compared with the assumptions on the
data in [14], in order to make sense of the residual-based a posteriori error estimator on finite elements, we only require
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