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a b s t r a c t

In this paper, the time domain Maxwell’s equations are solved using the discrete exterior
calculus (DEC) formalism in the two-dimensional space. To truncate the computational
domain, the complex frequency-shifted perfectly matched layer (CFS-PML) concept is
applied to create a reflectionless artificial layer. The paper presents a new numerical
procedure to easily implement the CFS-PML with curved inner boundary. In order to
numerically realize the PML, in a simplicial mesh, this paper proposes to utilize the nearest
neighbor algorithm to associate point sets to boundary points. The distance from points to
the boundary curve defines the attenuation function inside the PML. The performance of
the approach is assessed bymeasuring the reflection error for three numerical experiments.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In computational electromagnetics [1], curved boundaries are often needed to obtain an appropriate model for wave
propagation problems. In numerical simulations, the approach used to impose absorbing boundary conditions considerably
affect the accuracy and the computational costs. The perfectly matched layer (PML), originally proposed by Berenger [2],
requires boundaries aligned with a constant coordinate line, the attenuation direction.

One advantage of the PML over other absorbing boundary conditions is that the PML can be set closer to the radiating
sources. Thus, to take full advantage of this feature it is desired to build PML that conforms to the physical boundaries.

These kinds of problems have been investigated as a conformal PML (CPML), some relevant references are the works
published by Teixeira and Chew [3] Kuzuoglu and Mittra [4,5], and Donderici and Teixeira [6]. In the latter, a conformal PML is
introduced to solve Maxwell’s equations in time domain using the mixed finite element formulation (FETD).

A powerful way to address problems of electromagnetic waves is based on the exterior calculus of differential forms [7,8].
This allows us naturally to formulate the mixed FETDmethod, which is based on Maxwell’s first order curl equations. In this
case, the unknowns are the electric field circulation along the edges and themagnetic flux through the faces. To approximate
the fields, Whitney 1-forms are used to represent the electric field intensity E , and Whitney 2-forms approximate the
magnetic flux density B [9]. When using the leap-frog scheme, the update equations resemble those of finite difference
time domain with the exception that the mixed finite element update requires a sparse matrix inversion [10].

Moura et al. [11] present a new formulation to implement the Cartesian CFS-PML for domain truncation in 2-D directly
applied toMaxwell’s equationswritten in the language of differential forms. The influence of the CFS-PML parameters on the
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Fig. 1. A PML sector area defined by the nearest neighbors of q.

reflection error is investigated and optimal choices of these parameters are discussed. It is shown that the proposed method
is highly absorptive to evanescent modes when computing the wave interaction of elongated structures or sharp corners.

The novelty of this work is a new procedure to build PMLwith curved inner interfaces. It is based on the nearest neighbor
algorithm to select points in the PML region discretized by triangles. It is easily implemented in a code based on the
formulation presented in [11].

2. PML realization via nearest neighbors

To explain the rationale behind our approach, we recall that a PML region can be realized by mapping each point (x, y)
into a complex point (x̃, ỹ). The imaginary part, which causeswave attenuation, is a function of the shortest distance between
the inner boundary and the corresponding PML point. Note that this map can be applied locally and consequently we can
obtain a PML of arbitrary shape.

In this paper, we propose to utilize the nearest neighbors algorithm to build PML in the discrete context. Assuming that
the layer is discretized by a simplicial mesh each node on the inner surface is a query point, q. We define the set Dq as all
points in the PML region that are the nearest neighbors to q. Each point of Dq is complexfied by defining its imaginary part
as a function of its Euclidean distance to q.

Fig. 1 presents the geometric idea of the approach, and outgoing waves from the physical domain will attenuate as it
propagates in the sector area associated to q.

3. Discrete CFS-PML Maxwell’s equations in curved domains

In two-dimensional domains, Maxwell’s equations decompose into transverse-electric (TE) and transverse-magnetic
(TM) modes. For TE modes, the electric field, E , remains as a 1-form but the magnetic induction, B, becomes a scalar field
(the z-component of the vector B), i.e. a 2-form. On the other hand, for TMmodes, the electric field is a scalar function, i.e. a
0-form, and B becomes a 1-form [12]. Inside the PML region, frequency domain Maxwell’s equations are written in terms of
differential forms as follows [7]:

dsE = −jωB (1)

ds (⋆νB) = jω⋆ϵE (2)

where ⋆ϵ and ⋆ν are Hodge star operators associated with the permittivity (ϵ) and permeability
(
µ = ν−1

)
of the medium

and, in the interior of the PML regions, ds is the exterior derivative operator modified as

ds =

(
1
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∂
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∂

∂y
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)

∧ . (3)

For p = x, ywehave sp(ω) = kp+
σp

αp+jωϵ0
, whereσp is the conductivity in direction p,αp and kp are positive real parameters

of which kp ≥ 1. In the discretized context, we consider these parameters as being constant within each mesh element.
For the reader unfamiliar with the differential form notation, Eqs. (1)–(3) are rewritten in vector form:

∇s × Ē = −jωB̄ (4)

∇s ×
(
νB̄
)

= jωϵĒ (5)
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