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a b s t r a c t

In this work we prove convergence of the finite difference scheme for equations of
stationary states of a general class of the spatial segregation of reaction–diffusion systems
with m ≥ 2 components. More precisely, we show that the numerical solution ul

h, given
by the difference scheme, converges to the lth component ul, when the mesh size h tends
to zero, provided ul ∈ C2(Ω), for every l = 1, 2, . . . ,m. In particular, our proof provides
convergence of a difference scheme for the multi-phase obstacle problem.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. The setting of the problem

In recent years there have been intense studies of spatial segregation for reaction–diffusion systems. The existence of
spatially inhomogeneous solutions for competition models of Lotka–Volterra type in the case of two and more competing
densities has been considered in [1–7]. The aforementioned segregation problems led to an interesting class of multi-phase
obstacle-like free boundary problems. These problems have growing interest due to their important applications in the
different branches of applied mathematics. To see the diversity of applications we refer [8–10] and the references therein.

Nowadays, the theory of the one- and two-phase obstacle-like problems (elliptic and parabolic versions) is well-
established and for a reference we address to the books [11,12] and references therein. For two-phase problems the
interested reader is also referred to the recent works [13,14].

There is a vast literature devoted to the numerical analysis of one-phase obstacle-like problems, and we refer some of
well-known papers [15–18]. For the numerical treatment of the two-phase problems we refer to the works [19–24].

The present work concerns to prove the convergence of the difference scheme for a certain class of the spatial segregation
of reaction–diffusion system withm components.

Let Ω ⊂ Rn, n ≥ 2 be a connected and bounded domain with smooth boundary and m be a fixed integer. We consider
the steady-states of m competing species coexisting in the same area Ω . Let ui(x) denote the population density of the ith

component with the internal dynamic prescribed by Fi(x, ui).
We call them-tuple U = (u1, . . . , um) ∈ (W 1,2(Ω))m, a segregated state if

ui(x) · uj(x) = 0, a.e. for i ̸= j, x ∈ Ω.
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The problem amounts to

Minimize E(u1, . . . , um) =

∫
Ω

m∑
i=1

(
1
2
|∇ui|

2
+ Fi(x, ui)

)
dx, (1)

over the set

S = {(u1, . . . , um) ∈ (W 1,2(Ω))m : ui ≥ 0, ui · uj = 0, ui = φi on ∂Ω},

where φi ∈ H
1
2 (∂Ω), φi · φj = 0, for i ̸= j and φi ≥ 0 on the boundary ∂Ω.

We assume that

Fi(x, s) =

∫ s

0
fi(x, v)dv,

where fi(x, s) : Ω × R+
→ R is Lipschitz continuous in s, uniformly continuous in x and fi(x, 0) ≡ 0.

Remark 1. Functions fi(x, s)’s are defined only for non negative values of s (recall that our densities ui’s are assumed non
negative); thus we can arbitrarily define such functions on the negative semiaxis. For the sake of convenience, when s ≤ 0,
wewill let fi(x, s) = −fi(x, −s). This extension preserves the continuity due to the conditions on fi defined above. In the same
way, each Fi is extended as an even function.

Remark 2. We emphasize that for the case fi(x, s) = fi(x), the assumption is that for all i the functions fi(x, s) are nonnegative
and uniformly continuous in x. Also for simplicity, throughout the paper we shall call both Fi(x, ui) and fi(x, ui) internal
dynamics.

We would like to point out that the only difference between our minimization problem (1) and the problem discussed
in [2], is the sign in front of the internal dynamics Fi. In our case, the plus sign of Fi allows to get rid of some additional
conditions, which are imposed in [2, Section 2]. Those conditions are important to provide coercivity of a minimizing
functional in [2]. But in our case the above given conditions together with convexity assumption on Fi(x, s), with respect
to the variable s are enough to conclude Fi(x, ui(x)) ≥ 0, which in turn implies coercivity of a functional (1).

In order to speak on the local properties of the population densities, let us introduce the notion of multiplicity of a point
in Ω .

Definition 1. The multiplicity of the point x ∈ Ω is defined by:

m(x) = card {i : measure(Ωi ∩ B(x, r)) > 0, ∀r > 0} ,

where Ωi = {ui > 0}.

For the local properties of ui the same results as in [2] with the opposite sign in front of the internal dynamics fi hold.
Below, for the sake of clarity, we write down these results from [2] with appropriate changes.

Lemma 1 (Proposition 6.3 in [2]). Assume that x0 ∈ Ω, then the following holds:

(1) If m(x0) = 0, then there exists r > 0 such that for every i = 1, . . . ,m;

ui ≡ 0 on B(x0, r).

(2) If m(x0) = 1, then there are i and r > 0 such that in B(x0, r)

∆ui = fi(x, ui), uj ≡ 0 for j ̸= i.

(3) If m(x0) = 2, then there are i, j and r > 0 such that for every k and k ̸= i, j, we have uk ≡ 0 and

∆(ui − uj) = fi(x, (ui − uj))χ{ui>uj} − fj(x, −(ui − uj))χ{ui<uj} in B(x0, r).

Lemma 2 (Theorem 5.1 in [2]). For every minimizer (u1, . . . , um) ∈ S to the functional (1), the following inequality holds

∆

⎛⎝ul(x) −

∑
p̸=l

up(x)

⎞⎠ ≤ fl(x, ul),

for all l = 1, 2, . . . ,m.

Next, we state the following uniqueness theorem due to Conti, Terracini and Verzini, by observing that in our case the
plus sign in front of Fi requires convexity condition on Fi(x, s) rather than concavity condition given in [2].

Theorem 1 (Theorem 4.2 in [2]). Let the functional in minimization problem (1) be coercive and moreover each Fi(x, s) is convex
in the variable s, for all x ∈ Ω. Then, the problem (1) has a unique minimizer.
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