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1. Introduction
1.1. The setting of the problem

In recent years there have been intense studies of spatial segregation for reaction-diffusion systems. The existence of
spatially inhomogeneous solutions for competition models of Lotka-Volterra type in the case of two and more competing
densities has been considered in [ 1-7]. The aforementioned segregation problems led to an interesting class of multi-phase
obstacle-like free boundary problems. These problems have growing interest due to their important applications in the
different branches of applied mathematics. To see the diversity of applications we refer [8-10] and the references therein.

Nowadays, the theory of the one- and two-phase obstacle-like problems (elliptic and parabolic versions) is well-
established and for a reference we address to the books [11,12] and references therein. For two-phase problems the
interested reader is also referred to the recent works [13,14].

There is a vast literature devoted to the numerical analysis of one-phase obstacle-like problems, and we refer some of
well-known papers [15-18]. For the numerical treatment of the two-phase problems we refer to the works [ 19-24].

The present work concerns to prove the convergence of the difference scheme for a certain class of the spatial segregation
of reaction—diffusion system with m components.

Let 2 C R",n > 2 be a connected and bounded domain with smooth boundary and m be a fixed integer. We consider
the steady-states of m competing species coexisting in the same area £2. Let u;(x) denote the population density of the i
component with the internal dynamic prescribed by Fi(x, u;).

We call the m-tuple U = (uy, ..., uy) € (WH2(2))™, a segregated state if

ui(x) - uj(x) =0, ae. for i#j, xe 2.
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The problem amounts to

m
1
Minimize E(uy, . . ., Upy) = / Z <§|Vui|2 + Fi(x, u,-)) dx, (1)
2 i1

over the set
S={(ur, ..., up) € W)™ :u; > 0,u;-u; =0,u; = ¢ on 32},
where ¢; € H%(B.Q), ¢i - ¢ =0, fori # jand ¢; > 0 on the boundary 952.
We assume that
Fi(x,s) = /Sfi(x, v)dv,
0

where fi(x, s) : 2 x Rt — Ris Lipschitz continuous in s, uniformly continuous in x and fi(x, 0) = 0.

Remark 1. Functions fi(x, s)'s are defined only for non negative values of s (recall that our densities u;’s are assumed non
negative); thus we can arbitrarily define such functions on the negative semiaxis. For the sake of convenience, when s < 0,
we will let fi(x, s) = —fi(x, —s). This extension preserves the continuity due to the conditions on f; defined above. In the same
way, each F; is extended as an even function.

Remark 2. We emphasize that for the case fi(x, s) = fi(x), the assumption is that for all i the functions f;(x, s) are nonnegative
and uniformly continuous in x. Also for simplicity, throughout the paper we shall call both Fi(x, u;) and fi(x, u;) internal
dynamics.

We would like to point out that the only difference between our minimization problem (1) and the problem discussed
in [2], is the sign in front of the internal dynamics F;. In our case, the plus sign of F; allows to get rid of some additional
conditions, which are imposed in [2, Section 2]. Those conditions are important to provide coercivity of a minimizing
functional in [2]. But in our case the above given conditions together with convexity assumption on Fi(x, s), with respect
to the variable s are enough to conclude F;(x, u;(x)) > 0, which in turn implies coercivity of a functional (1).

In order to speak on the local properties of the population densities, let us introduce the notion of multiplicity of a point
in £2.

Definition 1. The multiplicity of the point x € £2 is defined by:
m(x) = card {i : measure($2; N B(x,r)) > 0, Vr > 0},
where §2; = {u; > 0}.

For the local properties of u; the same results as in [2] with the opposite sign in front of the internal dynamics f; hold.
Below, for the sake of clarity, we write down these results from [2] with appropriate changes.

Lemma 1 (Proposition 6.3 in [2]). Assume that xo € $2, then the following holds:

(1) If m(xo) = 0, then there exists r > 0 such that foreveryi =1, ..., m;
ui =0 on B(xg,T1).

(2) If m(xq) = 1, then there areiand r > 0 such that in B(xq, )
Au; = fi(x, up), u=0 forj#i

(3) If m(xo) = 2, then there are i, j and r > 0 such that for every k and k # i, j, we have u, = 0 and
Ay — uy) = filx, (Ui — u))Xq>uy — fX —(Ui — W;)) X <u;y in Blxo, T).

Lemma 2 (Theorem 5.1 in [2]). For every minimizer (uq, ..., un) € S to the functional (1), the following inequality holds

Al ut) =Y up) | < fitx, w),
p#l
foralll=1,2,...,m.

Next, we state the following uniqueness theorem due to Conti, Terracini and Verzini, by observing that in our case the
plus sign in front of F; requires convexity condition on F;(x, s) rather than concavity condition given in [2].

Theorem 1 (Theorem 4.2 in [2]). Let the functional in minimization problem (1) be coercive and moreover each Fi(x, s) is convex
in the variable s, for all x € §2. Then, the problem (1) has a unique minimizer.
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