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a b s t r a c t

In this paper, the time-splitting Fourier pseudospectral method on the generalized sparse
grids is applied to solve the space-fractional Schrödinger equation. We give a containment
relation between different level-index sets of the generalized sparse grids, and it can
be used in designing the reference generalized sparse grids which are finer than other
considered grids. Thus the numerical solution on the reference generalized sparse grids can
be used as the reference true solution of the equation. Then, the fully discrete algorithm
is obtained. In the numerical experiments, we compare the numerical results on the
generalized sparse grids with those on the full grids. For the interpolation of the Gaussian
multiplied by a factor and for the computation of the Schrödinger equation with two kinds
of non-smooth potentials, the advantages of the Fourier pseudospectral method on the
generalized sparse grids with the level-index set of parameter K = 1, 2, 3 are manifest in
the approximation with high resolution. Here the sparsity of the generalized sparse grids
will become weak when the parameter K becomes large. Moreover, the advantage of the
generalized sparse grids is more pronounced in solving the Schrödinger equation with the
higher dimension, the square well potential or the fractional Laplacian.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the d-dimensional (d > 0) time-dependent space-fractional Schrödinger equation (SFSE) with periodic bound-
ary conditions, i.e.

i
∂

∂t
ψ(x, t) =

1
2

(
−∆

)α/2
ψ + V (x)ψ, (x, t) ∈ Td

× R+, (1.1)

where ψ = ψ(x, t) is a complex-valued function and depends on the spatial variable x = (x1, x2, . . . , xd) and the time t , i is
the imaginary unit, Td

=
(
R/2πZ

)d is a d-dimensional torus, and the potential V (x) is a real-valued function defined on Td.
Here, the fractional Laplacian

(
−∆

)α/2 is defined as [1]

(−∆)α/2f (x) =

∑
k∈Zd

|k|
α
2 f̂ (k)e

ik·x, x ∈ Td, (1.2)
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where k · x = k1x1 + k2x2 + · · · + kdxd, |k|
α
2 =

(
k21 + k22 + · · · + k2d

) α
2 , and

f̂ (k) =
1

(2π )d

∫
[−π,π ]d

f (x)e−ik·xdx, k ∈ Zd (1.3)

are the Fourier coefficients. In particular, (1.2) is the classical integer Laplacian when α = 2.
At present, many numerical results for solving the space-fractional differential equations (SFDEs) are about the finite

differencemethods [2–7]. The spectralmethodswith the trigonometric basis [8,9] and theweighted polynomial basis [10,11]
have also been used for solving the SFDEs. In fact, the spectral methods have the distinct advantages in computing the SFDEs,
since some basis functions of spectral methods are non-local, and this corresponds to the characteristics of the fractional
derivatives. Schrödinger equation is the fundamental equation of quantum mechanics. The mathematical theory and the
numerical methods about the integer-order Schrödinger equation can be referred to [12–14]. The SFSE was derived by
Laskin [15] from the Feynman path integral over Lévy process. Guo, Han and Xin [16] discussed the well-posedness of the
SFSE with the period boundary conditions. Moreover, the numerical methods for solving the SFSE are very popular in recent
years [3–5,7,9,10].

In this paper, we are interested in the application of the sparse grid methods to the fractional order problems.
The sparse grid method was proposed by Smolyak [17] for the numerical integration, and it succeeded in solving the
multidimensional problems with bounded mixed derivatives [18]. Yserentant, Griebel and Hamaekers [19,20] researched
the finite difference method and the finite element method on the sparse grids for computing the electronic Schrödinger
equation. Hallatschek [21] used the hierarchical basis theory to obtain the fast Fourier transform (FFT) on sparse grids.
Gradinaru [22] implemented the sparse-grid-FFT by standard template library of C++, and applied the Fourier pseudospectral
method on sparse grids to solve the time-dependent Schrödinger equation. He also presented the corresponding error
analysis [23]. Meanwhile, Shen and Wang [24] researched the sparse-spectral method with the weighted polynomial basis.
Bungartz, Griebel, Hamaekers and Knapek [18,19,25] improved the conventional sparse grids to the generalized sparse grids.
Griebel and Hamaekers [26] gave the error estimation of the Fourier interpolation on the generalized sparse grids. However,
as far as we know, there was no relevant literature about the numerical methods on the sparse grids for computing the
SFDEs. It is worth noting that, the mathematical properties of the SFDEs are quite different from those of the integer-order
differential equations, especially for multidimensional problems. The properties of the high frequency components in the
solutions of the SFDEs may not be the same as those of the integer-order differential equations. Therefore, until the effective
numerical experiments are given, we are not sure whether the numerical methods on the sparse grids are suitable for
computing the fractional-order problems, although thesemethods have achieved the great advantages in the corresponding
integer-order problems.

The rest of paper is organized as follows.
In Section 2, we briefly introduce the generalized sparse grids and the fast Fourier transformation on the hierarchical

basis. Moreover, we give some estimation for the containing relation between different level-index sets.
In Section 3, we obtain the fully discrete algorithm of the Fourier pseudospectral method on the generalized sparse grids

for solving the SFSE.
In Section 4, we apply this algorithm to two SFSE problemswith the harmonic potential and the squarewell potential. For

different dimensions and different space-derivative orders, the computational errors are presented in the form of figures.
Meanwhile, we discuss the computational results obtained by this algorithm with different level-index sets.

In the final section, we give the conclusion.

2. Fourier interpolation on the generalized sparse grids

Let
G0 = {−π}, G1 = {0},

Gl =

{
(2k + 1)

2π
2l − π : k = 0, 1, . . . , 2l−1

− 1
}
, l = 2, 3, . . . ,

and
S0 = {0}, S1 = {1},

Sl =
{
σ (k) : k = 2l−1, 2l−1

+ 1, . . . , 2l
− 1

}
, l = 2, 3, . . . ,

where

σ (k) =

{
−k/2, if k is even,
(k + 1)/2, if k is odd, k ∈ N0,

and N0 denotes the natural number set including ‘‘0’’. The generalized sparse grid is defined as

GA =
{
x ∈ Rd

: xj ∈ Glj , l ∈ A, j = 0, 1, . . . , d − 1
}
, (2.1)
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