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a b s t r a c t

This paper presents the numerical results of compressible and incompressible flow prob-
lems through a unified approach based on a stabilized space–time finite element method.
The numerical approach is continuous in space and discontinuous in time. The proposed
method starts by the use of a stabilized space–time variational formulation, which allows
the use of the same order interpolation functions for all solution variables. The numerical
technique is tested through comparison with standard compressible and incompressible
flow benchmarks. Compressible flow cases include 1D and 2D shock problems. Incom-
pressible flow cases include lid-driven cavity flow and flow over a backward-facing step
computed over a range of Re numbers. The results demonstrate high stability and accuracy
of the numerical technique over a wide range of flow regimes, suggesting straightforward
extension to many flow cases not yet investigated.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The finite element method provides several stabilizers for handling complex problems in super/subsonic compress-
ible/incompressible flows [1,2]. In the context of the Galerkin finite element method, time-dependent fluid flow is solved
either with the semi-discrete approach or with the space–time formulation. In the semi-discrete approach the solution
is advanced in time by discretizing the time domain by the finite difference method. In the space–time finite element
method both space and time are discretized simultaneously, generating space–time slabs. For the basics of the space–time
formulation the reader is referred to [3,4]. The space–time finite element formulation has been successfully used for various
flow problems [5–12].

The computational methods for compressible and incompressible flows have been developed separately considering the
issues related to numerical stability and the choice of variables associated with the flow problems. Various researchers have
proposed ideas for a unified approach to compressible and incompressible flows. Weiss and Smith [13] proposed a unified
timemarching scheme by combining the ideas of lowMach number preconditioning and artificial compressibility. Karimian
and Schneider [14] presented a collocated pressure-based method that works in both compressible and incompressible
regimes. Xiao [15] employed the multi-integrated moments unified approach. Zienkiewicz et al. [16] introduced the
characteristic-based split algorithm applicable to both compressible and incompressible flows. Many other works have also
been done, see for example [17–19].

Hauke et al. [20] presented a unified finite element formulation for solving the compressible Navier–Stokes equations
with different sets of variables. The numerical scheme uses the Galerkin least-squares (GLS) [21] and discontinuity capturing
(DC) [22] stabilization operators to attain a stable solution. The numerical techniquewas tested in the incompressibility limit.
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It was shown that the sets of variables including density do not achieve finite values in the flux matrices. The entropy and
pressure primitive variables were shown to be suitable for both compressible and incompressible flows. Furthermore, it
was demonstrated that pressure variables provide better results than entropy variables for incompressible flows at high
Reynolds number while at the same time being easier to specify as boundary conditions.

In this article we investigate compressible and incompressible flows for a variety of problems of compressible low/high
Mach/Reynolds number flows. In [20] the driven cavity flow was simulated up to Re 400. In this work we analyse the same
case for Re up to 10,000. We also study the backward facing step reaching Re of 800, and several shock tube problems.
The computations are carried out with pressure primitive variables. The numerical code is written with meta-template C++
programming using OpenMPI. In Section 2 we present the strong form of the initial–boundary value problem. Equations are
written in general form for any independent set of variables that can be obtained by transformation from the conservative
ones. In Section 3 we focus on the space–time variational formulation for the Navier–Stokes equations in pressure primitive
variables with GLS stabilization followed by discretization and solution of the set of algebraic equations. Benchmarks for
compressible and incompressible flows are presented in Section 4. The method is demonstrated to be effective and efficient
over awide range of conditions from incompressible to compressible, and for low to high Re numbers, leading us to conclude,
in Section 5, that the numerical approach and code can be successfully used in a wide variety of flow problems having
scientific and industrial interest.

2. Governing equations and boundary conditions

The mathematical model describing compressible viscous flows consists of the conservative system of Navier–Stokes
equations. The system of equations in conservative variables with applied boundary conditions can be written in compact
form as

U,t + F a
i,i = F d

i,i + S on Ω ⊂ Rn, t > 0, (1)
U = Ug on ∂Ωg , t > 0, (2)

(F a
i + F d

i ) · ni = h on ∂Ωh, t > 0, (3)
U (t = 0) = U0 on Ω0 ⊂ Rn, (4)

where (),t denotes the Eulerian time derivative, Ω is the spatial domain in n dimensions and U = [ρ, ρv, ρE]
′ is the vector

of conservation variables. ∂Ωg and ∂Ωh are the Dirichlet and Neumann boundaries, respectively. Ug and h are the vectors
of Dirichlet and Neumann data, respectively. U0 is the initial data vector. n̂ is the unit outward normal vector. F a

i and F d
i are

the advective and diffusive flux vectors, respectively, in ith direction, and S is the source vector. The vectors are given by

F a
i =

[
ρvi

ρviv + δip
ρviE + vip

]
F d
i =

[ 0
τ i

τijvj − qi

]
S =

[ 0
ρb

ρ(bivi + r)

]
. (5)

The system of equations (1) represent the conservation of mass, momentum and energy; ρ is the density; v = [vi]
′ is the

velocity vector; E is the total energy density; p is the pressure; τ = [τij] is the viscous-stress tensor; δi = δei and τ i = τei,
where ei is the unit basis vector in the ith direction and δ = [δij] is the Kronecker delta; q = [qi]′ is the heat-flux vector;
b = [bi]′ is the body force vector per unit mass; r is the heat supply per unit mass; [ ]

′ refers to the transpose of the vector;
and the summation convention is assumed throughout. The total energy density is defined as E = cvT + |v|

2/2. The heat
flux is defined as qi = −κT,i. The system is closed by an equation of state. In the compressible flow applications presented
below we assume the ideal gas equation p = ρRT , where R = cp − cv is the gas constant. cp and cv are the specific heats at
constant pressure and volume, respectively. For incompressible flows the equation of state corresponds to constant density.
The compressible behaviour is characterized by means of two quantities corresponding to isobaric expansion coefficient αp
and isothermal coefficient of compressibility βT , defined as

αp = −
1
ρ

(
∂ρ

∂T

)
p

βT =
1
ρ

(
∂ρ

∂p

)
T
.

For an ideal gas the coefficients take the values of αp = 1/T and βT = 1/p. For incompressible flow both coefficients are
zero.

Eq. (1) can be rewritten for any independent set of variables Y as

A0Y,t + AiY,i = (KijY,j),i + S, (6)

where A0 = U,Y , Ai = F a
i,Y is the ith Euler Jacobian matrix and K = [Kij] is the diffusivity matrix with KijY,j = F d

i .

3. Space–time variational formulation

In the space–time finite element method both space and time are discretized simultaneously by taking a tensor product
of basis functions for the spatial domain and a one-dimensional basis function in the time direction. Let Q = Ω × (0, ttot ) be
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