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a b s t r a c t

The unsteady Stokes equations are semi-discretized in space to obtain a system of linear
time-invariant differential–algebraic equations (DAEs), i.e., the unsteady discrete Stokes
equations. The solution to unsteady discrete Stokes equations is represented as an integral
along a smooth curveΓ in the complex planewith singularities of the integrand located on
the left of and not too close to the curve Γ . Truncated quadrature rules based on the sinc
function are then employed to evaluate the solution. This results in a number of complex
linear systems to solve, leading to major expense in practical implementation. Constraint
preconditioners are proposed to work with the Krylov subspace methods for solving those
complex linear systems. Numerical examples illustrate that the numerical contour integral
methods are more effective than the time-stepping methods. In addition, the constraint
preconditioners significantly improve the behavior of Krylov subspacemethods for solving
the involved complex linear systems.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the numerical solution of unsteady Stokes equations modeling ‘‘low-speed’’ incompressible viscous flow as
follows:⎧⎨⎩

∂ u⃗
∂t

− ν ∇
2u⃗ + ∇p = f⃗ in Ω × [t0, t1],

∇ · u⃗ = 0 in Ω × [t0, t1],
(1.1)

where u⃗ is the velocity of fluid. p is the pressure of fluid. f⃗ is a given external force. Ω ⊂ Rd (d = 2, 3) is an open bounded
domain. ν > 0 is the kinematic viscosity. A boundary value problem is adding conditions to the system (1.1) on boundary
∂Ω = ∂ΩD ∪ ∂ΩN as

u⃗ = v⃗ on ∂ΩD, ν
∂ u⃗
∂ n⃗

− n⃗p = 0 on ∂ΩN,

where n⃗ is the outward-pointing normal to the boundary. Semi-discretization in space of system (1.1) leads to a system of
differential–algebraic equations (DAEs), i.e., the unsteady discrete Stokes equations:(

B
d
dt

+ A
)
x :=

{(
H 0
0 0

)
d
dt

+

(
A BT

B 0

)}(
u
p

)
=

(
f
g

)
:= b, x(t0) = x0 (1.2)
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whereH and A ∈ Rn×n are Hermitian positive definite representing velocitymassmatrix and discrete diffusion, respectively.
BT

∈ Rn×m and B ∈ Rm×n are full column rank and full row rank representing discrete gradient and negative discrete
divergence, respectively. u ∈ Rn and p ∈ Rm are the discrete velocity and pressure. f ∈ Rn and g ∈ Rm are forcing and
boundary terms. x0 ∈ Rn+m is the initial data.

The most frequently used methods for unsteady discrete Stokes equations (1.2) are time-stepping methods including
Runge–Kutta methods [1] and linear multi-step methods [1]. The basic idea of time-stepping methods is to adopt temporal
discretization to (1.2) on a prescribed time-level-sequence, then the evaluation of solution x is needed on each time level.
Therefore, a small time-step-size always leads to a large number of evaluations of solution x, thus making the workload
of time-stepping methods increasing intensively. In order to overcome the disadvantages of time-stepping methods with
small time-step-size, we employ the numerical contour integral methods instead based on efficient numerical Laplace
inversion [2,3].

The paper is organized as follows. In Section 2, we state and analyze the numerical contour integral methods for unsteady
discrete Stokes equations. In Section 3, we propose the constraint preconditioner for complex linear systems involved in the
numerical contour integralmethods. In Section 4,we list the numerical results to show the effectiveness of numerical contour
integral methods and the proposed constraint preconditioner. In Section 5, we give some concluding remarks.

Notation: Denote ı =
√

−1 as the imaginary unit. Denote R− as the negative real axis. Denote ℜ(·), ℑ(·) as the real part
and imaginary part of a number or a matrix.

2. Numerical contour integral method

In this section, we focus on numerical methods. Hence, we assume the existence of Laplace transform, Laplace inversion
and other integrals without addressing the convergence conditions in the sequel. The Laplace transform of a function v is
defined as

v̂ ≡ v̂(s) =

∫
∞

0
v(t)e−st dt.

By taking the Laplace transform on both sides of the unsteady discrete Stokes equations (1.2), we have

B (s x̂ − x0) + A x̂ = b̂,

where x̂ and b̂ are the Laplace transforms of x and b, respectively. If the complex number s is not a generalized eigenvalue
of the matrix pencil (A, −B), we obtain

x̂ = ÂC
−1̃b = (sB + A)−1̃b =

(
s H + A BT

B 0

)−1

b̃ with b̃ = b̂ + B x0.

The Laplace inversion of x̂ leads to the expression of x, i.e.,

x =
1

2π ı

∫ σ+ı∞

σ−ı∞
est x̂ ds with σ > σ0,

where σ0 is the convergence abscissa. The above formula is known as the Bromwich integral. In order to evaluate x
numerically, two properties should be guaranteed: first, the factor x̂ is analytic in much of the complex plane besides the
half-plane Re(s) > σ0; second, the factor est is analytic and decays rapidly as Re(s) → −∞ along the integral curve. An idea
to obtain these properties is to deform the Bromwich line Re(s) = σ into a contour Γ that is better suited for numerical
computation, i.e.,

x =
1

2π ı

∫
Γ

est x̂ ds.

The contour Γ should be a positively oriented curve that encloses both the spectrum of matrix pencil (A, −B) and the
singularities of b̃. This deforming idea is originated in [4,5] during themid-1950s. In order to determine the curveΓ properly,
we need to locate the spectrum of matrix pencil (A, −B) as in the following theorem.

Theorem 2.1. The spectrum of matrix pencil (A, −B) is a subset of the strictly negative real axis, i.e.,

sp(A, −B) ⊂ R− \ 0.

Proof. First, we consider a special case, i.e., H = I . For a complex number s ∈ C, if the shifted matrix s I + A is invertible, the
determinant of generalized characteristic matrix sB + A of the matrix pencil (A, −B) is given by

det(sB + A) = det
(
s I + A BT

B 0

)
= det(s I + A) det(−B(s I + A)−1BT ).

If the complex number satisfies ℜ(s) ≥ 0, since A is Hermitian positive definite and BT is full column rank, we have
det(sB + A) ̸= 0. Hence, the spectrum of matrix pencil (A, −B) belongs to the left-half complex plane. Furthermore, we
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