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a b s t r a c t

This work is motivated by a generalization of thewell-known Burgers–Fisher and Burgers–
Huxley equations in multiple dimensions, considering Riesz fractional diffusion and con-
vection. Initial–boundary conditions which are positive and bounded are imposed on a
closed and bounded rectangular domain. In this manuscript we propose a finite-difference
method to approximate the positive and bounded solutions of the fractional model. The
methodology is a linear three-steps Crank–Nicolson technique which is based on the use
of fractional centered differences. The properties of fractional centered differences are
employed to establish the existence and the uniqueness of solutions of the finite-difference
method, as well as the capability of the technique to preserve the positivity and the
boundedness of the approximations. We show in this work that the method is capable
of preserving some of the constant solutions of the continuous model. Additionally, we
prove that our technique is a second-order consistent, stable and quadratically convergent
scheme. Suitable bounds for the numerical solutions are also derived in this work. Finally,
some illustrative simulations show that the method is able to preserve the positivity and
the boundedness of the numerical approximations, in agreement with the analytic results
proved in this work. Numerical comparisons provided in this work confirm the rate of
convergence of the numerical technique.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the investigation of systems consisting of particleswith long-range interactions haswitnessed a notorious
development in view of the various applications to the physical sciences. Indeed, beyond the classical examples of point
masses in gravitational fields or systems of charged particles in space [1], there are various nontrivial physical systems of
particles with long-range interactions. For instance, the nonlinear interactions of vortexes in two-dimensions, the elasticity
arising from the study of planar stress, systems that consider dipolar forces [2] and the activation/repression of transcription
in chromosomal and gene regulation [3] are some well known problems involving globally interacting particles. These and
other examples have motivated the physical, the mathematical and the numerical investigation of this type of systems.
Moreover, it is worth pointing out that the mathematical investigation of some models with long-range interactions has
been extended to the continuous scenario (based on a continuous-limit process involving the Fourier series transform, the
limit when the inter-particle distance tends to zero and the inverse Fourier transform), obtaining thus models with Riesz
fractional derivatives in space [4].
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To be more precise, let α > 0 and consider a physical system of interacting particles whose dynamics is described by the
equations of motion

dun

dt
(t) = In(u(t)) + F (un(t)), ∀t ∈ R+,∀n ∈ Z. (1.1)

The functions un represent displacements from the equilibrium, F represents the interaction of the oscillators with an
external force, and the distance between consecutive oscillators is equal to h. In general, we let In be given by

In(u(t)) =

∞∑
m=−∞

m̸=n

J(n,m) [un(t) − um(t)] , ∀t ∈ R+,∀n ∈ Z, (1.2)

and J ∈ L2(Z) satisfies J(n,m) = J(n − m) = J(m − n) for allm, n ∈ Z. Let

Jα(k) =

∞∑
n=−∞

n̸=0

e−iknJ(n), ∀k ∈ R, (1.3)

satisfy

Aα = lim
k→0

Jα(k) − Jα(0)
|k|α

∈ R \ {0}. (1.4)

Taking Fourier series transform on both sides of (1.1), letting h → 0 and obtaining inverse Fourier transform yields
∂u
∂t

(x, t) − hαAα
∂αu
∂|x|α

(x, t) − F (u(x, t)) = 0, ∀(x, t) ∈ R × R+. (1.5)

Here, the fractional derivative in space of order α is understood in the sense of Riesz [4].
In summary, the use of Riesz fractional derivatives in the modeling of physical problems through partial differential

equations is justifiedmathematically in the continuous limit of certain particle systems.Moreover, various fractionalmodels
from science and engineering are also capable of preserving some physical quantities. As examples, we may consider some
gradient and Hamiltonian extensions of the Helmholtz conditions for phase space and some fractional equivalents of the
Fokker–Planck equation for fractalmedia [5], continuous-limit approximations of systems of coupled oscillatorswith power-
law interactions [6] andmathematicalmodelswith fractional dynamics resulting in optimal control theory [7]. It is important
to point out that some of these quantities are fractional forms of Hamiltonians [5], whence a natural direction of investigation
in scientific computing is the design of new computational techniques that preserve the relevant quantities of a physical
system described by fractional partial differential equations. It is worth pointing out that this task has been accomplished
recently for fractional hyperbolic partial differential equations that extend thewell known sine–Gordon andnonlinear Klein–
Gordon models from relativistic quantum mechanics, which are models for which a Hamiltonian function exists [8].

The literature also has reports of methods for fractional partial differential equations that do not necessarily preserve
the structure of the solutions, but most of the methods proposed are numerically efficient techniques. For example, some
highly accurate numerical schemes have been proposed for multi-dimensional space variable-order fractional Schrödinger
equations [9] and some techniques have been used to approximate the solutions of Riesz fractional advection–dispersion
equations [10]. Other approximation methods based on Legendre polynomials have been designed to solve the frac-
tional two-dimensional heat conduction equation [11], to approximate the solutions of the multi-term time-fractional
wave-diffusion equation [12], to solve numerically the two-dimensional variable-order fractional percolation equation in
non-homogeneous porousmedia [13], to estimate the solutions of (3+1)-dimensional generalized fractional KdV–Zakharov–
Kuznetsov equations through an improved fractional sub-equation method [14] and to solve fractional sub-diffusion
equations with variable coefficients [15]. As a conclusion, many reports show that the development of numerical techniques
to solve fractional partial differential equations has been a fruitful avenue of research, but few reports have striven to design
structure-preserving techniques for those systems.

In this work, the notion of ‘structure preservation’ not only refers to the capability of numerical methods to preserve
analogues of physical quantities. More generally, these concepts also refer to the capacity of a computational technique
to preserve mathematical features of the relevant solutions of continuous systems. Such features may naturally arise from
the physical context of the problem. A typical example is the condition of positivity (or non-negativity) of the solutions,
which is a natural requirement for problems in which the variables of interest are measured in absolute scales [16]. Other
characteristics include the boundedness [17], the monotonicity [18] and the convexity of approximations [19]. In the
present work, wewill consider an initial–boundary-value problem governed by amultidimensional parabolic equation with
Riesz fractional diffusion and convection. The problem is a generalization of various equations from mathematical physics,
including thewell knownBurgers–Fisher and the Burgers–Huxleymodels, which are equations forwhich there exist positive
and bounded solutions under suitable conditions. In thismanuscript, wewill propose a structure-preserving and numerically
efficient technique to approximate the solutions of that model using fractional centered differences.

Thismanuscript is organized as follows. In Section 2,wepresent the relevant definitions on fractional partial derivatives in
the Riesz sense, andwe introduce themodel under investigation. The initial–boundary-value problem of interest is governed
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