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a b s t r a c t

The asymptotic derivation of a new family of one-dimensional, weakly nonlinear and
weakly dispersive equations that model the flow of an ideal fluid in an elastic vessel
is presented. Dissipative effects due to the viscous nature of the fluid are also taken
into account. The new models validate by asymptotic reasoning other non-dispersive
systems of equations that are commonly used, and improve other nonlinear and dispersive
mathematicalmodels derived to describe the blood flow in elastic vessels. The new systems
are studied analytically in terms of their basic characteristic properties such as the linear
dispersion characteristics, symmetries, conservation laws and solitary waves. Unidirec-
tional model equations are also derived and analysed in the case of vessels of constant
radius. The capacity of the models to be used in practical problems is being demonstrated
by employing a particular system with favourable properties to study the blood flow in a
large artery. Twodifferent cases are considered: A vesselwith constant radius and a tapered
vessel. Significant changes in the flow can be observed in the case of the tapered vessel.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The study of the axisymmetric flow of an inviscid fluid in elastic vessels is important on several accounts but especially
because of its applications to the blood flow in arteries. The mathematical modelling of arterial systems is based on
the equations of continuum mechanics for the flow of an incompressible fluid in vessels known as the Navier–Stokes
equations, [1]. The incompressible Navier–Stokes formulation of the blood flow has the advantage of taking into account
the dissipative effects of the flow due to viscosity. On the other hand, the flow exhibits a rather complex structure due to
the mechanical interaction between the fluid and the vessel walls. Another very important factor that influences the blood
flow is the viscoelastic nature of vessel walls. For example, large arteries deform under blood pressure and they are capable
of storing elastic energy during the systolic phase and release it during the diastolic phase. Modelling the elastic properties
of the vessels appears to have significant difficulties of mathematical and numerical nature, [1–6].

Several attempts to simplify the study of the blood flow have been made, especially in the case of large vessels with
elastic wall that are capable to deform under pressure. In many recent studies the viscosity of the flow has been neglected
since otherwise the mathematical modelling becomes very complicated. To this end, the focus is mainly on the inviscid,
incompressible and radially symmetric fluid flow equations known to as the Euler equations. These equations written in

* Corresponding author.
E-mail addresses: dimitrios.mitsotakis@vuw.ac.nz (D. Mitsotakis), denys.dutykh@univ-savoie.fr (D. Dutykh), liqian5@myvuw.ac.nz (Q. Li).

https://doi.org/10.1016/j.camwa.2018.03.011
0898-1221/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.camwa.2018.03.011
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.camwa.2018.03.011&domain=pdf
mailto:dimitrios.mitsotakis@vuw.ac.nz
mailto:denys.dutykh@univ-savoie.fr
mailto:liqian5@myvuw.ac.nz
https://doi.org/10.1016/j.camwa.2018.03.011


D. Mitsotakis et al. / Computers and Mathematics with Applications 75 (2018) 4022–4047 4023

Fig. 1. Sketch of the physical domain for a single vessel segment with elastic and impenetrable wall.

cylindrical coordinates take the form:

ut + uux + vur +
1
ρ
px = 0 , (1.1)

vt + uvx + vvr +
1
ρ
pr = 0 , (1.2)

ux + vr +
1
r
v = 0 , (1.3)

where u = u(x, r, t), v = v(x, r, t) are the horizontal and radial velocity of fluid respectively, p = p(x, r, t) is the pressure of
the fluid, while ρ is the constant density of the fluid.

A sketch of the physical domain of this problem is presented in Fig. 1, where the distance of vessel’s wall from the centre
of the vessel in a cross section is denoted by rw(x, t) and depends on x and t while the radius of the vessel at rest is the
function r0(x). In general the deformation of the wall will be a function of x and t . If we denote the radial displacement of
the wall by η(x, t) then the vessel wall radius can be written as rw(x, t) = r0(x) + η(x, t).

The governing equations (1.1)–(1.3) combinedwith initial and boundary conditions form a closed system. A compatibility
condition is also applied at the centre of the vessel (due to cylindrical symmetry). Specifically, we assume that

v(x, r, t) = 0, for r = 0 . (1.4)

On the vessel wall the impermeability condition can be written in the form:

v(x, r, t) = ηt (x, t) + (r0(x) + η(x, t))xu(x, r, t), for r = rw(x, t) , (1.5)

and expresses that the fluid velocity equals the wall speed v = rw
t . The second boundary condition is actually Newton’s

second law on the vessel wall written in the form:

ρwhηtt (x, t) = pw(x, t) −
Eσh
r20 (x)

η(x, t) , (1.6)

where ρw is the wall density, pw is the transmural pressure, h is the thickness of the vessel wall, Eσ = E/(1 − σ 2) where E
is the Young modulus of elasticity with σ denoting the Poisson ratio of the elastic wall. In this study we assume that E is a
constant and in general we will replace in the notation Eσ by E. It is noted that because the flow is pressure-driven the effect
of gravity is neglected. For more information about the derivation of the Euler equations and the boundary conditions we
refer to [7,2]. It is noted that assuming a laminar flow and small viscosity the Navier–Stokes equations can be reduced to a
modified systemwhich is very similar to the Euler equations, [6], and therefore an analysis on the Euler equations can easily
be generalised to the specific simplified viscous case.

Due to the complexity of the Euler equations several one-dimensional models have been introduced, [8–15]. The models
include unidirectional, cf. e.g. [16–20], and bidirectional models, cf. e.g. [21–23]. Although these models usually are neither
asymptotic models nor dispersive, systematic comparisons between one and three dimensional idealised arterial blood flow
models showed a very good agreement, cf. e.g. [24]. Moreover, one-dimensional models can also be used to compute inflow
boundary conditions to three-dimensional models. However, one-dimensional models cannot handle curved vessels unless
the central axis is a graph of a function. For this reason three-dimensional models cannot be totally replaced by the simple
one-dimensional models, cf. e.g. [24–28]. It is noted that the literature is not limited in the above references but is very
extensive and we apologise if we do not include the complete literature in the field.

In this paper we derive some new asymptotic one-dimensional model equations of Boussinesq type (weakly non-linear
and weakly dispersive) that approximate the system (1.1)–(1.3) with boundary conditions (1.4)–(1.6). The new systems
describe inviscid and irrotational fluid flow in elastic vessels of variable diameter and can be used as an alternative to
the Euler equations (1.1)–(1.3). We also derive dissipative Boussinesq equations from the Navier–Stokes equations using
standard arguments on the velocity profile, [6], and extending the asymptotic reasoning of the inviscid case to the viscous
case. The new models are generic and can be used to study the blood flow in large arteries while discarding the dispersive
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