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a b s t r a c t

We present a model and discretization that couples the Ericksen model of liquid crystals
with variable degree of orientation to the Allen–Cahn equations with a mass constraint.
The coupled systemmodels liquid crystal droplets with anisotropic surface tension effects
due to the liquid crystal molecular alignment. The total energy consists of the Ericksen
energy, phase-field (Allen–Cahn) energy, and a weak anchoring energy that couples the
liquid crystal to the diffuse interface. We describe our discretization of the total energy
along with a method to compute minimizers via a discrete gradient flow algorithm which
has a strictly monotone energy decreasing property. Numerical experiments are given in
three dimensions that illustrate a wide variety of droplet shapes that result from their
interaction with defects.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

This paper presents amethod for solving the Ericksenmodel coupled to the Allen–Cahn equations [1–3] in order tomodel
the equilibrium shapes of nematic liquid crystal (LC) droplets with anisotropic surface tension [4–6]. LCs have a variety of
applications, e.g. electronic displays [7–9], in addition to a host of potential applications in material science [10–25]. To the
best of our knowledge, coupling Ericksen to Allen–Cahn has never been done. The main contributions of the paper are the
numerical method and the three-dimensional simulations of LC droplets that illustrate the coupled model.

Nematic droplets have been studied at the continuum level, including experiments [26,27], modeling [28–32], and shape
minimization of LC droplets [33]. Numerically, molecular dynamics approaches [34,22] and PDE techniques [35–39] have
been used to simulate LC droplets at equilibrium aswell as dynamics. The above references use either a (regularized) Oseen–
Frank type ofmodel or the Landau–deGennesmodel (Q-tensor) [40,6]. Our paper, and [41], is the first to consider the Ericksen
model in the context of LC droplets.

Initial studies of dynamics and numerics for the Ericksen model can be found in [42,43]. More recently, a method was
developed in [44–46] to solve the Ericksen model without any ad hoc regularization term. The method was justified via
Γ -convergence, and simulations were shown in three dimensions illustrating novel defect structures.

In this paper, we present a coupled model that combines the Ericksen model with anisotropic surface tension to model
energy minimizing shapes of LC droplets. The rest of the paper is organized as follows. In Section 2, we present the coupled
model at the continuous level, and Section 3 describes our discretization of the continuous model using a finite element
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method. Section 4presents a gradient flowmethod for computingminimizers of the discrete energy, andnumerical examples
in three dimensions are presented in Section 5. We conclude with some discussion in Section 6.

2. Coupled model

We couple two energetic models (Ericksen and Allen–Cahn) to obtain an equilibrium model of LC droplets. The Allen–
Cahn energy [2,3] models the separation of two immiscible LC phases with anisotropic surface tension between the
phases [4,40,47–49,36,35]. The Ericksen energy models the elasticity of the LC medium [5,40,6,42] in each phase.

2.1. Phase field representation

Suppose we have a fixed hold-all domain Ω ⊂ Rd that partitions into two ‘‘phases’’. For simplicity, we assume both
phases contain liquid crystal material, i.e.Ω ≡ int

(
Ω1

lc ∪Ω2
lc

)
, whereΩ i

lc is the ith liquid crystal phase (i = 1, 2). In order
to avoid dealing with sharp interfaces, we use a phase field function φ : Ω → [−1,+1] to represent the coexistence of the
two phases, i.e. φ ≈ +1 inΩ1

lc and φ ≈ −1 inΩ2
lc [50].

2.2. Ericksen’s model

The state of the liquid crystal is modeled by a director field n : Ω ⊂ Rd
→ Sd−1 with unit length, and a scalar field

s : Ω ⊂ Rd
→ (− 1

2 , 1) called the degree-of-orientation [40,46]. Essentially, n specifies the averaged orientation of LC
molecules, and s represents howwell the individual LC molecules are aligned with n. The equilibrium state (s,n) is assumed
to minimize a ‘‘one-constant’’ energy.

2.2.1. Ericksen’s one-constant energy
The equilibrium state (s,n) of the liquid crystal is assumed to minimize the following energy functional:

Eerk(s,n) :=

∫
Ω

(
κ|∇s|2 + s2|∇n|

2) dx,
Ebulk(s) :=

∫
Ω

ω(s)dx,
(1)

where κ > 0. The function ω is C2, defined on −1/2 < s < 1, and satisfies [5,51,52]

1. lims→1ω(s) = lims→−1/2ω(s) = ∞,
2. ω(0) > ω(s∗) = mins∈[−1/2,1]ω(s) = 0 for some s∗ ∈ (0, 1),
3. ω′(0) = 0.

2.2.2. Theoretical framework
The initial theory for minimizers (and regularity) of (1) was developed in [51,52], where they introduced an auxiliary

variable u = sn which allows for rewriting the energy Eerk(s,n) as

Eerk(s,n) = Ẽ1(s,u) :=

∫
Ω

(
(κ − 1)|∇s|2 + |∇u|

2) dx, (2)

which derives from the identity nT
∇n = 0T because of the unit length constraint |n| = 1. This suggests the following

admissible class of solutions (minimizers) to be [51,52]:

K :={(s,u) : Ω → (−1/2, 1) × Rd
: (s,u) ∈ [H1(Ω)]d+1, u = sn,n ∈ Sd−1

}. (3)

Note: we use an abuse of notation and write (s,n) in K to be equivalent to (s,u) in K with u = sn.
Enforcing boundary conditions on (s,u) is done in the following way. Let (Γs,Γu) be open subsets of ∂Ω where we set

Dirichlet boundary conditions for (s,u). This yields the following restricted admissible class

K(g, r) :=
{
(s,u) ∈ K : s|Γs = g, u|Γu = r

}
, (4)

for some given functions (g, r) ∈ [W 1
∞
(Rd)]d+1 that satisfy the following in a neighborhood of ∂Ω: −1/2 < g < 1 and

r = gq, for some q ∈ Sd−1. If we further assume

g ≥ δ0 on ∂Ω, for some δ0 > 0, (5)

then n is H1 in a neighborhood of ∂Ω and satisfies n = g−1r = q ∈ Sd−1 on ∂Ω .
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