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a b s t r a c t

We propose and study a combination of two second-order implicit–explicit (IMEX) meth-
ods for the coupled Stokes–Darcy system that governs flows in karst aquifers. The first
is a second-order explicit two-step MacCormack scheme and the second is a second-
order implicit Crank–Nicolson method. Both algorithms only require the solution of two
decoupled problems at each time step, one Stokes and the other Darcy. This combination so
called theMacCormack rapid solvermethod is very efficient (faster, at least of second order
accuracy in time and space) and can be easily implemented using legacy codes. Under time
step limitation of the form∆t ≤ Ch (where h,∆t aremesh size and time step, respectively,
and C is a physical parameter)weprove both long time stability and the rate of convergence
of the method. Some numerical experiments are presented and discussed.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The computational fluid dynamics (CFD) ‘‘frontier’’ has advanced from the simple to the complex. Generally, the simple
methods taxed the available computational powerwhen they occupied the frontier. The evaluation proceeded frommethods
for various forms of the potential and Navier–Stokes equations, or Stokes equations in the surface region to the Darcy’s law
in the subsurface region and then to nonstationarymixed Stokes–Darcymodel (for example, see [1], chapters 6–8, and [2,3])
which is the subject of thiswork.Most of the schemeswere developed at a timewhen the use of the Navier–Stokes equations
was prohibitive for many problems because of the large computer memory or CPU time required. If the partitionedmethods
for such evolutionary problemswere considered economical of computer resourceswhen theywere introduced, they are still
so [4,5]. In this work, we consider the coupled fluid flow and porous media flowmodeled by amixed Stokes–Darcy problem.
As literature on the mathematical analysis, numerical methods, and applications for the evolutionary groundwater–surface
water flows, see for example [6,2,3,7,4,5,8] and the references therein.

To specify the problem considered, letΩf be a fluid flow domain coupled with a porous media flow inΩp and lie across
an interface Γ from each other, whereΩf /p ⊂ Rd (d = 2 or 3) are bounded domains, that is,Ωf ∩Ωp = ∅ and Γ = Ω f ∩Ωp.
LetΩ = Ω f ∪Ωp, nf and np be the unit outward normal vectors on ∂Ωf and ∂Ωp, respectively, and τj, j = 1, . . . , d− 1, be
the unit tangential vectors on the interface Γ . It is worth noticing to recall that np = −nf on Γ .

Let T be a positive parameter (T can be equal∞). The fluid velocity and the porousmedia flow are governed by the Stokes
equations and the equations given in [9], respectively, that is

∂u
∂t

− ν△u + ∇p = f , in Ωf × [0, T ], (1)
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∇ · u = 0, in Ωf × [0, T ], (2)

S0
∂φ

∂t
+ ∇ · q = g̃, in Ωp × [0, T ], (3)

q = −K∇φ, in Ωp × [0, T ] (Darcy’s law) , (4)

up =
q
η
, in Ωp × [0, T ], (5)

u(x, 0) = u0(x), in Ωf and φ(x, 0) = φ0(x), in Ωp, (6)

u(x, t) = û(x, t), in (∂Ωf \ Γ ) × [0, T ] and φ(x, t) = φ̂(x, t), in (∂Ωp \ Γ ) × [0, T ], (7)
+ coupling conditions across Γ ,

where u(x, t), p(x, t), f (x, t) and ν represent the velocity of the fluid flow in Ωf , the kinetic pressure, the external force
and the kinematic viscosity, respectively. Similarly: φ(x, t), up(x, t), g̃(x, t), K , S0, η, and q(x, t) are the piezometric head,
the fluid velocity in Ωp, the source term, the hydraulic conductivity tensor, the specific mass storativity, the volumetric
porosity and the specific discharge defined as the volume of the fluid flowing per unit time through a unit cross-sectional
area normal to the direction of the flow, respectively. In addition, we denote by φ = z̄ +

pp
ρg , the sum of elevation head plus

pressure head, where pp is the pressure of the fluid in Ωp, ρ is the fluid density, g is the gravitational acceleration and z̄ is
the elevation from a reference level. Since the formulae can become quite heavy, for the sake of simplicity, we assume in the
following that z̄ = 0. Furthermore, we assume that K = diag(k, k, . . . , k) with k ∈ L∞(Ωp), k > 0, which implies that the
porous media is isotopic. Finally, using the Darcy’s law (4) in the continuity equation (3) in Ωp yields the following partial
differential equation

S0
∂φ

∂t
− ∇ · (K∇φ) = g̃, in Ωp × [0, T ].

The boundary conditions given by (7) are not very important to either the analysis or algorithm studied herein. For simplicity,
we assume in this work the homogeneous Dirichlet boundary conditions for the coupled model, that is

û = 0, in (∂Ωf \ Γ ) × [0, T ] and φ̂ = 0, in (∂Ωp \ Γ ) × [0, T ].

Since nf /p denote the indicated outward pointing unit normal vectors onΓ , the coupling conditions are conservation ofmass
given by

u · nf + up · np = 0 ⇔ u · nf −
1
η
K∇φ · np = 0, on Γ , (8)

and balance forces

p − νnf · ∇u · nf = ρgφ, on Γ . (9)

The equivalence given by (8) comes from the Darcy’s law (4) and relation (5). The last condition needed is a tangential
condition on the fluid region’s velocity on the interface:

− ντj
∂u
∂nf

=
α√

τj · K · τj
(u − up) · τj, j = 1, . . . , d − 1, on Γ . (10)

There have been many discussions on condition (10). However, it has been observed that in practice the term up · τj, on the
right hand side of relation (10) is much smaller than other terms and is thus negligible. This leads to the Beavers–Joseph–
Saffman interfacial coupling [10,7,11]

− ντj
∂u
∂nf

=
α√

τj · K · τj
u · τj, j = 1, . . . , d − 1, on Γ .

In this work, we focus on the numerical solution of the mixed model (1)–(7) using MacCormack rapid solver (MCRS)
method, that is, a coupled Crank–Nicolson scheme and explicit MacCormack method. There are many reasons as discussed
in [12] that have led to active research on developing effective and efficient decoupling techniques for multiphysics mixed
models so that existing single model solvers can be applied locally with little extra computational and software overhead.
In the literature (see for example [13,3,12]) most of the decoupled methods for the Stokes–Darcy model are developed for
the stationary case. For the nonstationary case, parallel non-iterative multi-physics domain decomposition methods are
proposed and numerical experiments are reported in [14,15]. Here, the MCRS method is proposed for devising decoupled
marching algorithms for the mixed model so that at each time level, two decoupled subproblems are solved independently
by invoking a Stokes solver and a Darcy solver, respectively. However, the method we study is new, three step partitioned
scheme motivated by the form of the coupling. It involves second order implicit discretization of the subdomain terms and
two step explicit MacCormack discretization of the exactly skew symmetric coupling terms. Furthermore, it is a satisfactory
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