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a b s t r a c t

Nonlocality and spatial heterogeneity of many practical systems have made fractional
differential equations very useful tools in Science and Engineering. However, solving these
type of models is computationally demanding. In this paper, we propose an exponential
integratormethod for space fractionalmodels as an attractive and easy-to-code alternative
for other existing second-order exponential integrator methods. This scheme is based on
using a real distinct poles discretization for the underlying matrix exponentials. One of the
major benefits of the proposed scheme is that the algorithm could be easily implemented
in parallel to take advantage of multiple processors for increased computational efficiency.
The scheme is established to be second-order convergent; and proven to be robust for
nonlinear space fractional reaction–diffusion problems involving non-smooth initial data.
Our approach is exhibited by solving a systemof two-dimensional problemswhich exhibits
pattern formation and has applications in cell-division. Empirically, super-diffusion pro-
cesses are displayed by investigating the effect of the fractional power of the underlying
Laplacian operator on the pattern formation found in these models. Furthermore, the
superiority of our method over competing second order ETD schemes, BDF2 scheme, and
IMEX schemes is demonstrated.

Published by Elsevier Ltd.

1. Introduction and preliminaries

Many complex systems are modeled by fractional order derivatives. These non-integer derivatives have become popular
in recent times due to the fact that they provide an adequate description ofmany processes that display anomalous diffusion.
Various applications are in modeling of different phenomena such as nanotechnology, control theory of dynamical systems,
viscoelasticity, anomalous transport and anomalous diffusion, financial modeling, random walk, and biological modeling,
see [1–5]. More detailed work on physical and engineering processes with applications of fractional calculus can be found
in [4,6–8]. Furthermore, sub-diffusion (fractional in time) and super-diffusion (fractional in space) have been observed and
the effect of the fractional orders have been seen in the solution profiles in many models, see [9,10].

Despite many advantages of using fractional derivatives, numerical solutions are computationally demanding. Existence
and uniqueness of solutions to fractional reaction–diffusion equations have been investigated using some assumptions on
reaction term (such as local/global Lipschitz continuity) in [11,12]. Researchers have proposed many numerical approaches
to solve equations involving fractional order derivatives. Among such methods are finite difference, finite element or finite
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volume discretization of the fractional operator, combined with a semi-implicit Euler formulation for the time evolution
of the solution. Specifically, for space fractional equations many approaches such as Krylov methods, fast numerical
integration in conjunction with effective preconditioners and Fourier spectral methods have been introduced in [9,13,14],
see also [11,12,15].

According to Samko et al. in [16], a fractional power of the Laplace operator is defined as follows:

− (−∆)α/2w(x) = −F−1|x|αFw(x), (1.1)

where F and F−1 are the Fourier transform and its inverse, respectively.

Definition 1.1. The Riesz fractional derivative of function w with orderm− 1 < α ≤ m, m ≥ 1 is defined as [17]
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cα =
1

2 cos
(

απ
2

) , α ̸= 1.

Lemma 1.2 ([18]). For a function w(x) defined on the infinite domain−∞ < x <∞, the following equality holds:
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Here, −∞Dα
x w(x) and xDα

+∞
w(x) are the left-sided and right-sided the Riemann–Liouville fractional derivatives given as:
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In this paper, we consider systems of nonlinear Riesz space fractional reaction–diffusion equations with homogeneous
Dirichlet boundary conditions given as

∂u
∂t
+ K1

∂αu
∂|x|α

+ K2
∂αu
∂|y|α

= g1(u, v), (x, y, t) ∈ Ω × (0, T ] (1.6)

∂v

∂t
+ K3

∂αv

∂|x|α
+ K4

∂αv

∂|y|α
= g2(u, v), (x, y, t) ∈ Ω × (0, T ], (1.7)

with initial conditions

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω ∪ ∂Ω, (1.8)

v(x, y, 0) = v0(x, y), (x, y) ∈ Ω ∪ ∂Ω (1.9)

where K1, K2, K3, and K3 are diffusion coefficients, Ω is bounded in R2, 1 < α ≤ 2 and ∂α

∂|x|α represents the Riesz fractional
derivative. We assume that g1 and g2 are sufficiently smooth functions to ensure that the problem with the specified initial
and boundary conditions possesses unique solutions [11].

Wepropose an exponential integratormethod for space fractionalmodels as an attractive and easy-to-code alternative for
other existing second-order methods. This scheme is based on using a real, distinct poles discretization for the underlying
matrix exponentials. A benefit of the proposed scheme is that the algorithm could be easily implemented in parallel for
increased computational efficiency. The scheme is established to be second-order convergent; and proven to be robust
for system of nonlinear space fractional reaction–diffusion problems involving non-smooth initial data. Our approach
is exhibited by solving system of two-dimensional problems which exhibit pattern formation and have applications in
cell-division. These include the system of space-fractional Schnakenberg model and the system of space-fractional Gray–
Scott model. Empirically, super-diffusion processes are displayed by investigating the effect of the fractional power of the
underlying Laplacian operator on the pattern formation found in these models. Furthermore, the superiority of our method
over competing second order ETD schemes, BDF2 scheme, and IMEX schemes is demonstrated. Our experiments confirm
that the proposed scheme is computationally more efficient.

2. Spatial discretization methods for fractional derivative

In this section, a fractional centered differencing and the matrix transfer technique are introduced for the discretization
of the Riesz space-fractional derivative.
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