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a b s t r a c t

A simple unified Godunov-type upwind approach that does not need Riemann solvers
for the flux calculation is developed for the finite volume discrete Boltzmann method
(FVDBM) on an unstructured cell-centered triangular mesh. With piecewise-constant (PC),
piecewise-linear (PL) and piecewise-parabolic (PP) reconstructions, three Godunov-type
upwind flux schemes with different orders of accuracy are subsequently derived. After
developing both a semi-implicit time marching scheme tailored for the developed flux
schemes, and a versatile boundary treatment that is compatiblewith all of the flux schemes
presented in this paper, numerical tests are conducted on spatial accuracy for several
single-phase flow problems. Four major conclusions can be made. First, the Godunov-type
schemes display higher spatial accuracy than the non-Godunov ones as the result of a
more advanced treatment of the advection. Second, the PL and PP schemes are much more
accurate than the PC scheme for velocity solutions. Third, there exists a threshold spatial
resolution below which the PL scheme is better than the PP scheme and above which the
PP schemebecomesmore accurate. Fourth, besides increasing spatial resolution, increasing
temporal resolution can also improve the accuracy in space for the PL and PP schemes.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The conventional lattice Boltzmann method (LBM) solves the lattice Boltzmann equation (LBE) in a Lagrangian space
by coupling the discretization of the particle velocity space and configuration space. With such a coupling mechanism, the
Courant–Friedrichs–Lewy (CFL) number can be chosen to be exactly one globally, which means that after each streaming
step, the particle distribution functions (PDFs) along all lattice velocities will stop perfectly at grid points. Such a unique
feature allows the LBM to achieve second-order accuracy in space with a first-order advection scheme. However, it is
this same feature that makes the LBM suffer from several pitfalls, one of which is that the LBM cannot perfectly capture
curved boundaries due to its uniform mesh structure [1]. Some pioneering work [2–5] showed that the LBE can simply be
considered a special finite-difference version of the more generalized discrete Boltzmann equation (DBE) that is Eulerian
in nature. Therefore, one can completely avoid the velocity–configuration coupling by solving the DBE instead of the LBE,
which subsequently enables the use of an arbitrary mesh. Following this idea, many Eulerian discrete Boltzmann methods
(DBM) have been developed to incorporate complex geometries. Among these, the finite volume discrete Boltzmannmethod
(FVDBM) [6–22] has received themost attention due to the built-in conservative property of the finite volumemethod (FVM).

Nevertheless, a considerable diffusion error has been, expectedly, observed when the DBE is solved, and especially on
irregular grids [6,23]. Such an error exclusively comes from the evaluation of the advection in Eulerian space. First, the
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CFL = 1 condition will be lost when the DBE is solved in Eulerian space, which means numerical viscosity has to be
introduced by upwind schemes (or a combination of the upwind scheme and others) to maintain stability [24]. The second
reason, which is not unique to the DBE, is that the complex topology on an unstructuredmeshwill inevitably introduce some
error to the advection stencil, part of which eventually becomes numerical viscosity. These explain why, in a previous study,
a theoretically second-order scheme for advection could only deliver a result that is slightly higher than first order [25]. As
a result, the DBE approaches have an edge over LBE approaches, which is the ability to handle complex geometries with
unstructured mesh. However, the consequence for this advantage is a significant increase in numerical error. Therefore,
there is a need for higher-order advection schemes in order to use the DBM as a better alternative to the LBM [26].

The DBE is a hyperbolic equation with a strong advection term. Solving a hyperbolic equation, e.g. the Euler equation
or Navier–Stokes (NS) equation, with minimum diffusion error while maintaining stability is a constant concern in the
computational fluid dynamics (CFD) community. After decades of development, there are many successful techniques,
among which Godunov’s method has dominated many CFD codes in the subgenre of FVM, due to its higher fidelity and
better stability. In Godunov’s method, the advected scalar is considered as a wavemoving at its characteristic velocity. Then,
a Riemann problem appears at the interface between two adjacent cells, which is solved by exact or approximate Riemann
solvers, e.g. Roe’s solver [27]. Different reconstructions of the wave structure determine the order of Godunov’s method. The
piecewise-constant (PC) reconstruction proposed in the original work from Godunov [28], the piecewise-linear (PL) method
developed by Bram van Leer [29–33] that gave birth to the still popular Monotone Upstream Scheme for Conservation Laws
(MUSCL), and the piecewise-parabolic (PP) reconstruction introduced by Colella andWoodward [34,35] give the first-order,
second-order and third-order Godunov’s methods, respectively.

Despite the high success of Godunov’s method in the CFD community, its importance is not recognized widely within the
LBM circle. Most FVDBM [6–18,22] work treats the advected scalar in the advection term as a scalar value in a static point of
view, in contrast to Godunov’s method. The only application of Godunov’s method in FVDBM so far was employed by Patil
and Lakshmisha in their simulations of single-phase problems [19–21], which involve a Riemann solver and a limiter that
satisfies the Total Variation Diminishing (TVD) property. However, the linear advection term in the DBE (i.e. the advection
has a constant speed that is defined by the lattice velocity) and the mutual independence among all PDFs do not require any
type of Riemann solver when calculating the PDF flux on the face between two neighbor cells (this will be explained in detail
later in this paper). The TVD limiters, which were originally developed for simulating one-dimensional (1D) shocks in CFD
tools, were first introduced into LBM simulations by Teng et al. [36] and Lee et al. [37] to solve the streaming step of LBE for
multi-phase problems that experience sharp gradients similar to acoustic shocks. Therefore, TVD limiters are not necessary
when the flows are single-phase and do not have large gradients if simulated by the DBE. More importantly, it was pointed
out very early in the CFD community by Goodman and LeVeque that TVD limiters are no better than first-order accurate
when extended to multiple dimensions [38]. This is probably why only an overall first-order accuracy in space was reported
for their flux scheme with TVD limiters in the work of Patil and Lakshmisha [19–21].

Therefore, in order to achieve better accuracy in space, a simpleGodunov-type upwind approach that does not require any
Riemann solver for the advection of FVDBM is developed in the present paper. Then, with different PDFwave reconstructions
(PC, PL and PP) on a universal stencil, threeGodunov flux schemeswith different orders of accuracy are formulated. After that,
a semi-implicit temporal scheme specifically designed for the presented Godunov-type flux scheme is shown. In order to
make comparisons between theGodunov andnon-Godunov schemes, a standard second-order upwind (SOU) scheme,which
is non-Godunov, and the corresponding time-marching approach are also provided. Next, a boundary treatment that works
seamlessly with all of the developed flux schemes is also established. With thorough numerical testing, some important
conclusions can be reached.

2. Formulation of the FVDBM

The DBE with the Bhatnagar–Gross–Krook (BGK) collision model, which is obtained by discretizing the particle velocity
space of the continuous Boltzmann equation with a finite number of velocity components [39], is shown as follows:
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where f and f eq are the PDF and equilibrium PDF respectively, and e is the lattice velocity. The subscript α indicates the αth
member out of M total components of the discretized particle velocity space, and τ is the relaxation time. By choosing a
proper lattice model, eα and f eqα can be defined explicitly. For example, for the commonly used D2Q9 lattice, they are defined
as:
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