ARTICLE IN PRESS

Computers and Mathematics with Applications **I** (**IIII**)

FISEVIER

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

An overdetermined problem for a weighted Poisson's equation*

Qi-hua Ruan^a, Weihua Wang^{a,b,*}, Qin Huang^a

^a School of Mathematics and Finance, Putian University, Putian 351100, PR China

^b School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China

ARTICLE INFO

Article history: Received 1 April 2017 Received in revised form 4 October 2017 Accepted 26 January 2018 Available online xxxx

Keywords: Overdetermined problem Weighted Laplacian Ball Mean value properties

ABSTRACT

In this paper, we discuss an overdetermined problem for a weighted Poisson's equation. We prove that if there exists a solution of the weighted Poisson's equation $\Delta u + \nabla \log w \cdot \nabla u = -1$ on a smooth bounded domain Ω with both Dirichlet and Neumann constant boundary condition, and the weight function w satisfies some conditions in Ω , then Ω is a ball. We also study some applications of the overdetermined problems and some overdetermined problems with nonconstant Neumann boundary condition.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction and main results

Let Ω be a smooth connected and bounded domain in \mathbb{R}^n and consider the Poisson's equation $\Delta u = -1$ in Ω with Dirichlet condition u = 0 or Neumann condition $u_v = c$ on $\partial \Omega$; here v denotes the unit outer normal vector of $\partial \Omega$ and c is a constant. It is well known there exists a solution of the Poisson's equation with Dirichlet condition or Neumann condition. But both Dirichlet condition and Neumann condition cannot be imposed simultaneously. In general, the resulting problem does not admit a solution unless Ω is a ball. Indeed in a celebrated paper [1], Serrin proved that there exists a solution of the following overdetermined problem:

	$\Delta u = -1$	in Ω ,
ĺ	$u = 0$ and $u_v = c$	on $\partial \Omega$

if and only if Ω is a ball and u is a radial function.

This result has its physical explanation [1,2], the associated Dirichlet problem describes a viscous incompressible fluid moving in straight parallel streamlines through a straight pipe of given cross sectional form Ω . If we fix rectangular coordinates (x, y, z) with z-axis directed along the pipe, it is well known that the flow velocity u along the pipe is then a function of x and y, and satisfies $\Delta u + k = 0$, where k is a constant related to the viscosity and density of the fluid. The adherence condition is given by u = 0 on $\partial \Omega$. The result of Serrin allows us to state that the tangent stress per unit area on the pipe wall (represented by μu_{ν} , where μ is the viscosity) is the same at all points of the wall if and only if the pipe has a circular cross section.

The main tool of Serrin's proof is a technique known as the moving planes method, combined with a refinement of the maximum principle. Later Weinberger [3] used the maximum principle applied to an auxiliary function to obtain a

https://doi.org/10.1016/j.camwa.2018.01.036 0898-1221/© 2018 Elsevier Ltd. All rights reserved.

Please cite this article in press as: Q.-h. Ruan, et al., An overdetermined problem for a weighted Poisson's equation, Computers and Mathematics with Applications (2018), https://doi.org/10.1016/j.camwa.2018.01.036.

[🌣] This work was partly supported by NSFC, No. 11471175 and NSFC of Fujian, No. 2017J01563, No. 2017J01564.

^{*} Corresponding author at: School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, PR China. *E-mail addresses*: ruanqihua@163.com (Q.-h. Ruan), wangvh@163.com (W. Wang), qinhuang78@163.com (Q. Huang).

2

ARTICLE IN PRESS

Q.-h. Ruan et al. / Computers and Mathematics with Applications **I** (**IIII**) **III**-**III**

very simple proof of the same result. There are some alternative proofs (see [4–8]). Further many extensions have been studied, concerning domains with a less regular boundary (see [9,10]), or exterior domain (see [11–14]), or annular domains (see [15,16]). Other extensions have been given for elliptic equations more general than the Laplacian and possibly degenerated [17–23] and for parabolic equations (see [24]). In [16,25–27], the authors consider the overdetermined problems where the Neumann boundary condition is not constant and involves the boundary curvature. In [6,28], the overdetermined problems in the constant curvature space are discussed. Very recently, Bianchini and Ciraolo [29] considered Serrin problem with the anisotropic p-Laplacian operator in the same spirit as [4] and [18]. The literature about overdetermined problems is so wide that it is impossible to report it exhaustively.

In this paper, we investigate the overdetermined problem

$$\begin{cases} \Delta_{w} u = -1 & \text{in } \Omega \subset \mathbb{R}^{n}, \\ u = 0 \text{ and } u_{v} = c & \text{on } \partial \Omega, \\ \nabla u(0) = 0, & & \\ \nabla^{2} \log w(\nabla u, \nabla u) + \frac{(\nabla \log w \cdot \nabla u)^{2}}{\alpha} \leq 0 & \text{in } \Omega, \end{cases}$$

$$(1.1)$$

where the weighted Laplacian is defined by $\Delta_w = \Delta + \nabla \log w \cdot \nabla$, for a positive function $w \in C^{2,\gamma}(\mathbb{R}^n \setminus \{0\})$ that is a homogeneous function of degree $\alpha > 0$, i.e. $\nabla w \cdot x = \alpha w$, (for example, $w = |x|^{\alpha}$).

Remark 1.1. The condition of $\nabla u(0) = 0$ is not essential. Since the weighted Poisson equation of $\Delta_w u = -1$ can be understood by weak solution, i.e. it satisfies that for any $\varphi \in C_0^{\infty}(\Omega)$, $\int_{\Omega} \nabla u \cdot \nabla \varphi d\mu = \int_{\Omega} \varphi d\mu$, where $d\mu = wdx$, and pointwise equations in all subsequent calculations can be made in the sense of integration. Hence the only singular point of x = 0 may be neglected.

Notice that $\triangle_w u = \frac{1}{w} div(w \nabla u)$. To our knowledge, there are few references concerning this kind of overdetermined problems. One difficulty of this problem consists in finding suitable weight functions such that a solution exists. As we known, if w is α -homogeneous and we take a radial solution of $\triangle u = -A$ in B(0, R) such that u = 0 on $\partial B(0, R)$, then $\triangle u$ and $\nabla \log w \cdot \nabla u$ must be both constant and u satisfies problem (1.1) for a suitable choice of the constant A. This fact implies us to choose a weight function w to be a homogeneous function. Our choice of the weight function is also motivated by the Ref. [30], where the authors use the ABP method to get the sharp weighted isoperimetric inequalities. In [31], the first author obtain a sharp gradient estimate for the solution of the weighted Laplace's equation.

Then we obtain the following result about the overdetermined problem (1.1).

Theorem 1.1. Let Ω be a connected and bounded domain with the smooth boundary $\partial \Omega$ in \mathbb{R}^n . If there exists a solution $u \in C^2(\Omega)$ of the overdetermined problem (1.1), then Ω is a ball centered at 0.

When *u* is a radial symmetric solution, $\nabla w \cdot x = \alpha w$ implies $\nabla^2 \log w (\nabla u, \nabla u) + \frac{(\nabla \log w \cdot \nabla u)^2}{\alpha} \leq 0$. In fact, by homogeneity of the weight function *w*, it is easy to see that ∇w is homogeneous of degree $\alpha - 1$, then

$$\nabla^2 \log w(\nabla u, \nabla u) + \frac{(\nabla \log w \cdot \nabla u)^2}{\alpha}$$

= $\frac{1}{r^2} (\frac{\partial u}{\partial r})^2 (\frac{1}{w} \nabla^2 w(x, x) - \frac{\alpha - 1}{\alpha} (\nabla \log w \cdot x)^2)$
= $\frac{1}{r^2} (\frac{\partial u}{\partial r})^2 (\alpha(\alpha - 1) - \alpha(\alpha - 1)) = 0.$

Thus we get the following corollary.

Corollary 1.1. Let Ω be a connected and bounded domain with the smooth boundary $\partial \Omega$ in \mathbb{R}^n . If there exists a radial solution $u \in C^2(\Omega)$ of the overdetermined problem (1.1), then Ω is a ball centered at 0.

Next we give a result of the existence of a solution of the overdetermined problem (1.1).

Theorem 1.2. Let Ω be a ball centered at 0 with a radius R in \mathbb{R}^n . Then $\frac{R^2 - |x|^2}{2(n+\alpha)}$ is a solution of the overdetermined problem (1.1).

As its application of Theorem 1.2, we deduce a mean value property for a weighted harmonic function in a ball. A function $h \in C^2(\Omega)$ is called a weighted harmonic function if it satisfies $\Delta_w h = 0$ in Ω . When the weight function is a constant, the weighted harmonic function becomes a harmonic function.

The weighted harmonic function has some similar properties as the harmonic function. For example, it is well known, every bounded harmonic function in Euclidean space is a constant (see [32]). This result was extended by Yau [33] to a Riemannian manifold with a nonnegative Ricci curvature. For a weighted harmonic function, Li [34] proved this property also holds in a Riemannian manifold with a nonnegative Bakry–Emery Ricci curvature (also see [35]). The mean value property of a harmonic function is a classical result. However to our knowledge, the mean property of a weighted harmonic function is unknown so far.

Please cite this article in press as: Q.-h. Ruan, et al., An overdetermined problem for a weighted Poisson's equation, Computers and Mathematics with Applications (2018), https://doi.org/10.1016/j.camwa.2018.01.036.

Download English Version:

https://daneshyari.com/en/article/6891919

Download Persian Version:

https://daneshyari.com/article/6891919

Daneshyari.com