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a b s t r a c t

In this paper, the performance of the Finite Cell Method is studied for nearly incom-
pressible finite strain plasticity problems. The Finite Cell Method is a combination of the
fictitious domain approach with the high-order Finite Element Method. It provides easy
mesh generation capabilities for highly complex geometries; moreover, this method offers
high convergence rates, the possibility to overcome locking and robustness against high
mesh distortions. The performance of this method is numerically investigated based on
computations of benchmark and applied problems. The results are also verified with the
h- and p-version Finite Element Method. It is demonstrated that the Finite Cell Method is
an appropriate simulation tool for large plastic deformations of structures with complex
geometries and microstructured materials, such as porous and cellular metals that are
made up of ductile materials obeying nearly incompressible J2 theory of plasticity.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The Finite Cell Method (FCM) is a fictitious domain approach based on the high-order Finite Element Method (FEM) in
order to simplify the meshing of highly complex geometries [1,2]. The standard FEM discretizes the solution field using a
geometry-conforming mesh. However, it can also be discretized independently using a simpler non-conforming mesh. As
stated in the FCM Refs. [1–4], this approach has been followed in the scope of meshless and element-free methods, the
generalized FEM, the extended FEM, and immersed boundary or fictitious domain methods. The FCM, due to its fictitious
domain approach, can easily operate with almost any complex geometric model, ranging from boundary representations
to voxel representations. Therefore, the FCM provides the possibility of an efficient integration of geometric modeling and
FEM computations, which is a significant help when trying to reduce the total time of numerical simulations. There are
also other methods trying to integrate geometric modeling and FEM computations. Examples are Isogeometric Analysis
(IGA) with NURBS-based shape functions [5] and the high-order FEM with CAD-based blending functions for geometrical
mappings [6,7].

The FCM applies a high-order basis, e.g. the hierarchical (integrated Legendre) basis of the p-FEM [1,2] as well as smooth
B-spline and NURBS basis functions [8–10]. Therefore, the FCM inherits the advantages of high-order basis functions. The
p-FEM basis functions [7,11,12] are used in the current research. The p-FEM yields high convergence rates provided that
the solution is smooth enough or a proper mesh design is combined with the p-refinement [11,13–15]. It can overcome
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volumetric locking in nearly incompressible materials and thin-walled structures [11,13]. In addition, it is highly insensitive
to element distortions [13]. Similar advantages can also be provided with IGA [5,16]. The sum of these outstanding features
has recently led to extensions of high-order approaches such as IGA [17,18] and the p-FEM to the finite strain J2 plasticity,
which is characterized with nearly incompressible behavior. Considering ductile metals, the plastic deformation is purely
incompressible; while, the elastic deformation is compressible and small. In the finite strain range, the large plastic
deformation dominates the total deformation and makes it nearly incompressible [19,20].

In this paper, the FCM is extended to the finite strain J2 plasticity. The FCM provides easy mesh generation capabilities
due to its fictitious domain approach. Also, it provides a high convergence rate, a possibility to overcome locking behavior
and robustness against high distortions stemming from its high-order basis. The J2 theory with FCM is applicable in the
finite strain elastoplastic analysis of a wide variety of engineering structures with complex geometries and microstructured
materials which are made up of ductile metals. Typical examples are metal forming problems as well as the plasticity of
porous and cellular materials. The FCM was first introduced for linear elastic problems [1,2]. Later, it was successfully
extended to various fields in structural mechanics [3,4], including finite strain elasticity [10,21], small strain elastoplas-
ticity [22,23] and damage mechanics [24,25]. Further extensions include topology optimization, biomedical engineering,
numerical homogenization, wave propagation in heterogeneousmaterials, adaptivemesh-refinement and local enrichment,
convection diffusion problems, thin-walled structures, iso-geometric-analysis, and multi-physical applications [3,4].

The outline of this paper is as follows: Section 2 summarizes the hyperelastic-based finite strain J2 plasticity theory. In
Section 3, we will briefly explain the FCM formulation for the nonlinear solution of finite strain elastoplastic problems. In
Section 4, we will numerically investigate the performance of the FCM by computing benchmark problems as well as the
applied problems. Finally, Section 5 will summarize the most important results and give an outlook to future work.

2. Finite strain J2 plasticity

In the following, the finite strain plasticity of von Mises or J2 plasticity theory with isotropic hardening is briefly
summarized [19]. This model is formulated in spatial form with hyperelastic description of the elastic behavior. The main
kinematic hypothesis is the local multiplicative decomposition of the deformation gradient, F =

∂ x
∂ X , into elastic F e and

plastic F p contributions:

F = F eF p. (1)

For the elastic part of the deformation, the specific free energy function of the Hencky material is assumed, which yields the
following simple constitutive equation for the Kirchhoff stress tensor

τ = D : εe , εe
=

1
2
lnBe (2)

where εe is the spatial logarithmic elastic strain tensor, Be
= F e(F e)T is the elastic left Cauchy–Green tensor, and D has the

format of the small strain isotropic elasticity tensor.
The classical von Mises yield function is formulated in terms of the deviatoric Kirchhoff stress tensor s

8(s, σy) =

√
3
2
s : s − σy(α) (3)

where s = τ −
1
3 tr τ, σy is the uniaxial yield strength as a generally nonlinear function of the isotropic hardening

parameter α.
The associative Prandtl–Reuss flow rule for ductile metals in the finite strain range reads:

Ḟ p (F p)−1
=

√
3
2
γ̇ (Re)T nRe , n =

s
∥s∥

(4)

where γ̇ is the non-negative plastic multiplier and Re is the elastic rotation tensor. This equation gives the evolution of
the plastic deformation gradient. In addition, it implicates the incompressibility of the plastic flow [19], i.e. det F p

= 1 or
tr Lp

= 0 where Lp
= Ḟ p(F p)−1.

The isotropic hardening relation is the same as in the small strain theory,

α̇ = γ̇ . (5)

The hardening law and the flow rule are complemented by the Kuhn–Tucker loading/unloading conditions

Φ ≤ 0 , γ̇ ≥ 0 , Φ γ̇ = 0. (6)

The aforementioned constitutive relations are integrated according to the backward or fully implicit Euler procedure in order
to update the state variables, as explained in Appendix. The exponential mapping technique is also utilized for the flow rule
in order to maintain its volume-preserving feature.
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