The Drazin inverse of an even-order tensor and its application to singular tensor equations

Jun Ji, Yimin Wei *
Department of Mathematics, Kennesaw State University, 1100 S. Marietta Pkwy, Marietta, GA 30060, USA
School of Mathematical Sciences and Shanghai Key Laboratory of Contemporary Applied Mathematics, Fudan University, Shanghai
200433, PR China

A R TICLE INFO

Article history:

Received 2 November 2017
Received in revised form 7 January 2018
Accepted 4 February 2018
Available online xxxx

Keywords:

Drazin inverse
Einstein product
Tensor equation
The canonical form

Abstract

The notion of the Moore-Penrose inverses of matrices was recently extended from matrix space to even-order tensor space with Einstein product in the literature. In this paper, we further study the properties of even-order tensors with Einstein product. We define the index and characterize the invertibility of an even-order square tensor. We also extend the notion of the Drazin inverse of a square matrix to an even-order square tensor. An expression for the Drazin inverse through the core-nilpotent decomposition for a tensor of even-order is obtained. As an application, the Drazin inverse solution of the singular linear tensor equation $\mathcal{A} * \mathcal{X}=\mathcal{B}$ will also be included.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the practical use of high dimensional tensors in many fields such as chemometrics, computer vision, data mining, signal processing, and graph analysis etc. [1-7], the research on tensors has been very active recently [8-16].

For a positive integer N, let $[N]=\{1,2, \ldots, N\}$. An order k tensor $\mathcal{A}=\left(A_{i_{1} \ldots i_{k}}\right) \in \mathbb{C}^{I_{1} \times I_{2} \times \cdots \times I_{k}}$ is a multidimensional array with $I_{1} I_{2} \ldots I_{k}$ entries over complex field \mathbb{C}, where $i_{j} \in\left[I_{j}\right], j \in[k]$. Given $\mathcal{A}=\left(A_{i_{1} \ldots i_{k}}\right)$ and $\mathcal{B}=\left(B_{i_{1} \ldots i_{k}}\right) \in \mathbb{C}^{I_{1} \times I_{2} \times \cdots \times I_{k}}$ and a scalar $\alpha \in \mathbb{C}$, with the standard addition $\mathcal{A}+\mathcal{B}=\left(A_{i_{1} \ldots i_{k}}+B_{i_{1} \ldots i_{k}}\right)$ and the scalar product $\alpha A=\left(\alpha A_{i_{1} \ldots i_{k}}\right), \mathbb{C}^{I_{1} \times I_{2} \times \cdots \times I_{k}}$ is a vector space. The vector space \mathbb{C}^{n} and matrix space $\mathbb{C}^{I_{1} \times I_{2}}$ are two special examples of tensor spaces.

For tensors $\mathcal{A} \in \mathbb{C}^{I_{1} \times \cdots \times I_{k} \times J_{1} \times \cdots \times J_{k}}$ and $\mathcal{B} \in \mathbb{C}^{J_{1} \times \cdots \times J_{k} \times J_{k+1} \times \cdots \times J_{m}}$ with $m \geq k$, the Einstein product $A *_{k} B$ of tensors \mathcal{A} and \mathcal{B} is a tensor in $\mathbb{C}^{I_{1} \times \cdots \times I_{k} \times J_{k+1} \times \cdots \times J_{m}}$ defined in [17] by

$$
\begin{equation*}
\left(\mathcal{A} *_{k} \mathcal{B}\right)_{i_{1} \ldots i_{k} j_{k+1} \ldots j_{m}}=\sum_{\left.j_{r} \in J_{r}\right], r \in[k]} A_{i_{1} \ldots i_{k} j_{1} \ldots j_{k}} B_{j_{1} \ldots j_{k} j_{k+1} \ldots j_{m}} \tag{1.1}
\end{equation*}
$$

This tensor product satisfies the associative law. When $m=k, \mathcal{A} *_{k} \mathcal{B}$ is in $\mathbb{C}^{I_{1} \times \cdots \times I_{k}}$ for tensor $\mathcal{B} \in \mathbb{C}^{J_{1} \times \cdots \times J_{k}}$. Thus, the $2 k$-order tensor \mathcal{A} can be viewed as an operator from tensor space $\mathbb{C}^{I_{1} \times \cdots \times J_{k}}$ to tensor space $\mathbb{C}^{I_{1} \times \cdots \times I_{k}}$. Let this operator be denoted by $L_{\mathcal{A}} \cdot L_{\mathcal{A}}$ is indeed a linear operator between two tensor spaces of order- k. For simplicity, we will not distinguish the difference between $L_{\mathcal{A}}$ and \mathcal{A} and omit the subindex k, i.e., $L_{\mathcal{A}}(\mathcal{X})=\mathcal{A} *_{k} \mathcal{X} \equiv \mathcal{A} * \mathcal{X}$.

Define the inner product on $\mathbb{C}^{N_{1} \times \cdots \times N_{k}}$

$$
\langle\mathcal{X}, \mathcal{Y}\rangle=\sum_{n_{r} \in\left[N_{r}\right], r \in[k]} \overline{\mathcal{X}}_{n_{1} \ldots n_{k}} \mathcal{Y}_{n_{1} \ldots n_{k}}
$$

[^0]for any $\mathcal{X}, \mathcal{Y} \in \mathbb{C}^{N_{1} \times \cdots \times N_{k}}$ and the Frobenius norm $\|\cdot\|_{F}$ is defined as $\|\mathcal{X}\|_{F}=\sqrt{\langle\mathcal{X}, \mathcal{X}\rangle}$. Obviously, we have (1) $\langle\mathcal{X}, \mathcal{Y}\rangle=$ $\overline{\langle\mathcal{Y}, \mathcal{X}\rangle} ;(2)\|\mathcal{X}\|_{F}=0$ if and only if $\mathcal{X}=0$; and (3) $\|\mathcal{X}+\mathcal{Y}\|_{F}^{2}=\|\mathcal{X}\|_{F}^{2}+\langle\mathcal{X}, \mathcal{Y}\rangle+\langle\mathcal{Y}, \mathcal{X}\rangle+\|\mathcal{Y}\|_{F}^{2}$. For a scalar α in $\mathbb{C}, \bar{\alpha}$ is the conjugate of α. For a tensor $\mathcal{A} \in \mathbb{C}^{I_{1} \times \cdots \times I_{k} \times J_{1} \times \cdots \times J_{k}}$, the conjugate transpose \mathcal{A}^{*} of \mathcal{A} is defined by $\left(\mathcal{A}^{*}\right)_{i_{1} \ldots i_{k} j_{1} \ldots j_{k}}=\bar{A}_{j_{1} \ldots j_{k} i_{1} \ldots i_{k}}$. A simple calculation indicates that
\[

$$
\begin{equation*}
\langle\mathcal{W} * \mathcal{X}, \mathcal{Y}\rangle=\left\langle\mathcal{X}, \mathcal{W}^{*} * \mathcal{Y}\right\rangle \tag{1.2}
\end{equation*}
$$

\]

for any $\mathcal{W} \in \mathbb{C}^{I_{1} \times \cdots \times I_{k} \times J_{1} \times \cdots \times J_{k}}, \mathcal{X} \in \mathbb{C}^{J_{1} \times \cdots \times J_{k}}$, and $\mathcal{Y} \in \mathbb{C}^{I_{1} \times \cdots \times I_{k}}$ [18].
The diagonal tensor \mathcal{D} in $\mathbb{C}^{N_{1} \times \cdots \times N_{k} \times N_{1} \times \cdots \times N_{k}}$ is the tensor with its entries defined by

$$
(\mathcal{D})_{i_{1} \ldots i_{k} j_{1} \ldots j_{k}}= \begin{cases}d_{i_{1} \ldots i_{k}} & \text { if } i_{r}=j_{r} \in\left[N_{r}\right], \text { for } r \in[k] \\ 0 & \text { otherwise }\end{cases}
$$

where $d_{i_{1} \cdots i_{k}}$ is a complex number. If all the diagonal entries $d_{i_{1} \cdots i_{k}}=1$, then the diagonal tensor \mathcal{D} is called the identity tensor, denoted by \mathcal{I}. The identity tensor depends on the dimensions $N_{1}, N_{2}, \ldots, N_{k}$ of all orders. For simplicity, we will not indicate its dependency on the dimension of each order and use \mathcal{I} to denote both identity tensors in $\mathbb{C}^{I_{1} \times \cdots \times I_{k} \times I_{1} \times \cdots \times I_{k}}$ and $\mathbb{C}^{J_{1} \times \cdots \times J_{k} \times J_{1} \times \cdots \times J_{k}}$. It is easy to show that $(\mathcal{A} * \mathcal{B})^{*}=\mathcal{B}^{*} * \mathcal{A}^{*}$ and $\mathcal{I} * \mathcal{A}=\mathcal{A} * \mathcal{I}=\mathcal{A}$ for $\mathcal{A} \in \mathbb{C}^{I_{1} \times \cdots \times I_{k} \times J_{1} \times \cdots \times J_{k}}$ and $\mathcal{B} \in \mathbb{C}^{J_{1} \times \cdots \times J_{k} \times L_{1} \times \cdots \times L_{k}}$ [19].

For a tensor $\mathcal{A} \in \mathbb{C}^{I_{1} \times \cdots \times I_{k} \times I_{1} \times \cdots \times I_{k}}$, if there exists a tensor $\mathcal{B} \in \mathbb{C}^{I_{1} \times \cdots \times I_{k} \times I_{1} \times \cdots \times I_{k}}$ such that $\mathcal{A} * \mathcal{B}=\mathcal{B} * \mathcal{A}=\mathcal{I}$, then \mathcal{A} is said to be invertible and the \mathcal{B} is called the inverse of \mathcal{A} and denoted by \mathcal{A}^{-1} [20]. For a general tensor \mathcal{A} in $\mathbb{C}^{I_{1} \times \cdots \times I_{k} \times J_{1} \times \cdots \times J_{k}}$, its inverse may not exist. But it is shown in [19] that there exists a unique \mathcal{X} in $\mathbb{C}^{J_{1} \times \cdots \times J_{k} \times I_{1} \times \cdots \times I_{k}}$ satisfying

$$
\begin{align*}
\mathcal{A} * \mathcal{X} * \mathcal{A} & =\mathcal{A} \tag{1.3}\\
\mathcal{X} * \mathcal{A} * \mathcal{X} & =\mathcal{X} \tag{1.4}\\
(\mathcal{A} * \mathcal{X})^{*} & =\mathcal{A} * \mathcal{X} \tag{1.5}\\
(\mathcal{X} * \mathcal{A})^{*} & =\mathcal{X} * \mathcal{A} \tag{1.6}
\end{align*}
$$

The unique \mathcal{X}, denoted by \mathcal{A}^{\dagger}, is called the Moore-Penrose inverse of \mathcal{A}. Obviously, we have $\mathcal{A}^{\dagger}=\mathcal{A}^{-1}$ if \mathcal{A} is invertible. The weighted Moore-Penrose inverse of an even-order tensor was recently introduced in [18]. Many results on the generalized inverses, the \mathcal{X} which only satisfies some of the four Eqs. (1.3)-(1.6), can be found in [21,22]. The Moore-Penrose inverses of tensors with an alternative product and the application to linear models are documented in [23].

In this paper, we further develop useful and important properties of even-order tensors with Einstein product. We show that the dimension of $R(\mathcal{A})$ is equal to that of $R\left(\mathcal{A}^{*}\right)$ which, together with the fundamental theorem of even-order tensors [18], enables us to define the index and the Drazin inverse of a tensor in $\mathbb{C}^{I_{1} \times \cdots \times I_{k} \times I_{1} \times \cdots \times I_{k}}$. An explicit expression for the Drazin inverse of a tensor is obtained through its core-nilpotent decomposition. As an application, the Drazin inverse solution [24-27] of the singular linear tensor equation $\mathcal{A} * \mathcal{X}=\mathcal{B}$ will also be presented at the end of the paper.

2. Further properties of even-order tensors

In this section, we collect a few useful properties of even-order tensors.
Define the null space and the range of $\mathcal{A} \in \mathbb{C}^{I_{1} \times \cdots \times I_{k} \times J_{1} \times \cdots \times J_{k}}$ to be

$$
N(\mathcal{A})=\left\{\mathcal{X} \in \mathbb{C}^{J_{1} \times \cdots \times J_{k}}: \mathcal{A} * \mathcal{X}=0\right\} \text { and } R(\mathcal{A})=\left\{\mathcal{A} * \mathcal{X}: \mathcal{X} \in \mathbb{C}^{J_{1} \times \cdots \times J_{k}}\right\}
$$

respectively. It is easily seen that $N(\mathcal{A})$ is a subspace of $\mathbb{C}^{J_{1} \times \cdots \times J_{k}}$ and $R(\mathcal{A})$ is a subspace of $\mathbb{C}^{I_{1} \times \cdots \times I_{k}}$. The null spaces and ranges of the tensors \mathcal{A}^{*} and $\mathcal{A}^{*} * \mathcal{A}$ can be defined similarly. The orthogonal complement of a subspace \mathcal{L} in $\mathbb{C}^{N_{1} \times \cdots \times N_{k}}$ is defined by

$$
\mathcal{L}^{\perp}=\left\{\mathcal{X} \in \mathbb{C}^{N_{1} \times \cdots \times N_{k}}:\langle\mathcal{X}, \mathcal{Y}\rangle=0 \text { for all } \mathcal{Y} \in \mathcal{L}\right\}
$$

Lemma 2.1. Let $\mathcal{A} \in \mathbb{C}^{I_{1} \times \cdots \times I_{k} \times J_{1} \times \cdots \times J_{k}}$. Then
(1) $N(\mathcal{A})^{\perp}=R\left(\mathcal{A}^{*}\right), R(\mathcal{A})^{\perp}=N\left(\mathcal{A}^{*}\right), R\left(\mathcal{A}^{*}\right)^{\perp}=N(\mathcal{A})$, and $N\left(\mathcal{A}^{*}\right)^{\perp}=R(\mathcal{A})$;
(2) $N\left(\mathcal{A}^{*} * \mathcal{A}\right)=N(\mathcal{A})$ and $R\left(\mathcal{A}^{*} * \mathcal{A}\right)=R\left(\mathcal{A}^{*}\right)$.

Lemma 2.1 was established under a more general setting in [18]. When $k=1$, it reduces to the fundamental theorem of linear algebra [28]. Lemma 2.1 has played a key role in establishing an alternative proof, which is much simpler than the one in [19], for the minimum-norm and least-squares solution to the tensor equation $\mathcal{A} * \mathcal{X}=\mathcal{B}$. It is this result that helps us to define the index of a "square" tensor, which paves the way to define the Drazin inverses of even-order tensors.

Denote the dimension of a subspace \mathcal{L} by $\operatorname{dim}(\mathcal{L})$. For a matrix $A \in \mathbb{C}^{m \times n}$, we have $\operatorname{dim}(R(A))=\operatorname{dim}\left(R\left(A^{*}\right)\right)$. For tensors, we have the following similar result.

Lemma 2.2. Let $\mathcal{A} \in \mathbb{C}^{I_{1} \times \cdots \times I_{k} \times J_{1} \times \cdots \times J_{k}}$. Then, we have $\operatorname{dim}(R(\mathcal{A}))=\operatorname{dim}\left(R\left(\mathcal{A}^{*}\right)\right)$.

https://daneshyari.com/en/article/6891948

Download Persian Version:
https://daneshyari.com/article/6891948

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: jji@kennesaw.edu (J. Ji), ymwei@fudan.edu.cn (Y. Wei).

