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1. Introduction

Due to the practical use of high dimensional tensors in many fields such as chemometrics, computer vision, data mining,
signal processing, and graph analysis etc. [ 1-7], the research on tensors has been very active recently [8-16].

For a positive integer N, let [N] = {1, 2, ..., N}. An order k tensor A = (A;,. ;) € C'*2*lk js a multidimensional array
with I11; . .. I entries over complex field C, where i; € [Ij], j € [k]. Given A = (4;, ;) and B = (B;, _;,) € C'"*2>*l and a
scalar o € C, with the standard addition A + B = (Aj,__;, + Bi,..;,) and the scalar product ¢A = (¢A;, _;,), C>*2* <k js a
vector space. The vector space C" and matrix space C'*2 are two special examples of tensor spaces.

For tensors A € C'7**loJix-xJk apd B € )< ixltrxxIm with m > k, the Einstein product AxB of tensors A and B
is a tensor in C'1 > *lkxJk+1x>Jm defined in [17] by

(ARB i = D AiriiiBirddsin- (1.1)
jrelrlrelk]

This tensor product satisfies the associative law. When m = k, A% isin C'**! for tensor B € CJ1**Jk, Thus, the 2k-order
tensor A can be viewed as an operator from tensor space ¢/1**Jk to tensor space C''**/_ Let this operator be denoted by
L4.L 4 isindeed alinear operator between two tensor spaces of order-k. For simplicity, we will not distinguish the difference
between L 4 and A and omit the subindex k, i.e., L4(X) = A% X = A % X.

Define the inner product on CN1>**Nk

(Xa y) = Z Enl.“nkynlmnk

nr€[Ny],relk]
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for any &,y € CN1**Nk and the Frobenius norm | - ||r is defined as ||X | = +/{X, X). Obviously, we have (1) (x,Y) =
(v, X); (2)Ix]lr = 0if and only if ¥ = 0; and (3) |X + V|2 = |X[|Z + (X, V) + (¥, X) + | V||2. For ascalar « in C, & is the
conjugate of . For a tensor A € C'1**lkxJixxJk the conjugate transpose A* of A is defined by (A )i, _iy..jc = Ay icis..ic-
A simple calculation indicates that

WX, y) = (X, W %) (1.2)

forany W e Ch>lioxJix=xie x e ¢k and y e Cl<*Ik [18].
The diagonal tensor D in CN1**NixNix-xNi i the tensor with its entries defined by

D) . = d;,..i, ifiy =j; € [N;],forr € [k]
HeW-de 0 otherwise,
where dj,..;, is a complex number. If all the diagonal entries d;,..;, = 1, then the diagonal tensor D is called the identity

tensor, denoted by Z. The identity tensor depends on the dimensions Ny, N, ..., N of all orders. For simplicity, we will
not indicate its dependency on the dimension of each order and use Z to denote both identity tensors in Cl>*lxfxxI
and QJrdiodix-xk [t is easy to show that (A * B)* = B* s A*and T« A = A% T = Afor A € Ch*xlxJixxJk apd
Be (C]lx‘“X]kX’-lX‘“XLk [19]

For atensor A € Chx Iyl if there exists a tensor B € C' < *xlixxle guch that A x B = B * A = T, then A is
said to be invertible and the B is called the inverse of .A and denoted by .A~" [20]. For a general tensor A in C' >l
its inverse may not exist. But it is shown in [ 19] that there exists a unique X in /1 *Jkxh>xxlk gatisfying

AxX*x A=A (1.3)
X*xAxX = X (1.4)
AxX)" = AxX (1.5)
(X xA)* = x*x A (1.6)

The unique X, denoted by A", is called the Moore-Penrose inverse of .A. Obviously, we have AT = 4~ if 4 is invertible. The
weighted Moore-Penrose inverse of an even-order tensor was recently introduced in [ 18]. Many results on the generalized
inverses, the X which only satisfies some of the four Egs. (1.3)-(1.6), can be found in [21,22]. The Moore-Penrose inverses
of tensors with an alternative product and the application to linear models are documented in [23].

In this paper, we further develop useful and important properties of even-order tensors with Einstein product. We show
that the dimension of R(A) is equal to that of R(.A*) which, together with the fundamental theorem of even-order tensors [ 18],
enables us to define the index and the Drazin inverse of a tensor in Cl>>kxI><xIk An explicit expression for the Drazin
inverse of a tensor is obtained through its core-nilpotent decomposition. As an application, the Drazin inverse solution
[24-27] of the singular linear tensor equation .4 * X = B will also be presented at the end of the paper.

2. Further properties of even-order tensors
In this section, we collect a few useful properties of even-order tensors.
Define the null space and the range of A € C't>*~>*kXJ1x>Jk to be
NUA)={x e A% x =0} and R(A) = {Ax X : x € Ok

respectively. It is easily seen that N(A) is a subspace of ¢/1**Jc and R(A) is a subspace of C'1**/_ The null spaces and
ranges of the tensors A* and A* A can be defined similarly. The orthogonal complement of a subspace £ in CN1**Nk js
defined by

ct={x ech M. (x y)=0forally e }.

Lemma 2.1. Let A € Clv<*IdJixxJk Then

(1) N(A)YL = R(A*), RCA)T = N(A*), RGA*)+ = N(A), and N(A*)* = R(A);
(2) N(A* % A) = N(A) and R(A* % A) = R(A*).

Lemma 2.1 was established under a more general setting in [ 18]. When k = 1, it reduces to the fundamental theorem of
linear algebra [28]. Lemma 2.1 has played a key role in establishing an alternative proof, which is much simpler than the one
in [19], for the minimum-norm and least-squares solution to the tensor equation A x X = B. It is this result that helps us to
define the index of a “square” tensor, which paves the way to define the Drazin inverses of even-order tensors.

Denote the dimension of a subspace £ by dim(£). For a matrix A € C™*", we have dim(R(A)) = dim(R(A*)). For tensors,
we have the following similar result.

Lemma 2.2. Let A € Clv<*IdJixJk Then, we have dim (R(A)) = dim (R(A*)).
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