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a b s t r a c t

The notion of the Moore–Penrose inverses of matrices was recently extended from matrix
space to even-order tensor space with Einstein product in the literature. In this paper, we
further study the properties of even-order tensors with Einstein product. We define the
index and characterize the invertibility of an even-order square tensor. We also extend
the notion of the Drazin inverse of a square matrix to an even-order square tensor. An
expression for the Drazin inverse through the core-nilpotent decomposition for a tensor of
even-order is obtained. As an application, the Drazin inverse solution of the singular linear
tensor equation A ∗ X = B will also be included.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the practical use of high dimensional tensors in many fields such as chemometrics, computer vision, data mining,
signal processing, and graph analysis etc. [1–7], the research on tensors has been very active recently [8–16].

For a positive integer N , let [N] = {1, 2, . . . ,N}. An order k tensorA = (Ai1...ik ) ∈ CI1×I2×···×Ik is a multidimensional array
with I1I2 . . . Ik entries over complex field C, where ij ∈ [Ij], j ∈ [k]. Given A = (Ai1...ik ) and B = (Bi1...ik ) ∈ CI1×I2×···×Ik and a
scalar α ∈ C, with the standard addition A + B = (Ai1...ik + Bi1...ik ) and the scalar product αA = (αAi1...ik ), C

I1×I2×···×Ik is a
vector space. The vector space Cn and matrix space CI1×I2 are two special examples of tensor spaces.

For tensors A ∈ CI1×···×Ik×J1×···×Jk and B ∈ CJ1×···×Jk×Jk+1×···×Jm with m ≥ k, the Einstein product A∗kB of tensors A and B
is a tensor in CI1×···×Ik×Jk+1×···×Jm defined in [17] by

(A∗kB)i1...ikjk+1...jm =

∑
jr∈[Jr ],r∈[k]

Ai1...ikj1...jkBj1...jkjk+1...jm . (1.1)

This tensor product satisfies the associative law.Whenm = k,A∗kB is inCI1×···×Ik for tensorB ∈ CJ1×···×Jk . Thus, the 2k-order
tensor A can be viewed as an operator from tensor space CJ1×···×Jk to tensor space CI1×···×Ik . Let this operator be denoted by
LA. LA is indeed a linear operator between two tensor spaces of order-k. For simplicity, wewill not distinguish the difference
between LA and A and omit the subindex k, i.e., LA(X ) = A∗kX ≡ A ∗ X .

Define the inner product on CN1×···×Nk

⟨X ,Y⟩ =

∑
nr∈[Nr ],r∈[k]

X n1...nkYn1...nk
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for any X ,Y ∈ CN1×···×Nk and the Frobenius norm ∥ · ∥F is defined as ∥X∥F =
√

⟨X ,X ⟩. Obviously, we have (1) ⟨X ,Y⟩ =

⟨Y,X ⟩; (2) ∥X∥F = 0 if and only if X = 0; and (3) ∥X +Y∥
2
F = ∥X∥

2
F + ⟨X ,Y⟩ + ⟨Y,X ⟩ + ∥Y∥

2
F . For a scalar α in C, ᾱ is the

conjugate of α. For a tensor A ∈ CI1×···×Ik×J1×···×Jk , the conjugate transpose A∗ of A is defined by (A∗)i1...ikj1...jk = Āj1...jki1...ik .
A simple calculation indicates that

⟨W ∗ X ,Y⟩ = ⟨X ,W∗
∗ Y⟩ (1.2)

for any W ∈ CI1×···×Ik×J1×···×Jk , X ∈ CJ1×···×Jk , and Y ∈ CI1×···×Ik [18].
The diagonal tensor D in CN1×···×Nk×N1×···×Nk is the tensor with its entries defined by

(D)i1...ikj1...jk =

{
di1···ik if ir = jr ∈ [Nr ], for r ∈ [k]
0 otherwise,

where di1···ik is a complex number. If all the diagonal entries di1···ik = 1, then the diagonal tensor D is called the identity
tensor, denoted by I. The identity tensor depends on the dimensions N1,N2, . . . ,Nk of all orders. For simplicity, we will
not indicate its dependency on the dimension of each order and use I to denote both identity tensors in CI1×···×Ik×I1×···×Ik

and CJ1×···×Jk×J1×···×Jk . It is easy to show that (A ∗ B)∗ = B∗
∗ A∗ and I ∗ A = A ∗ I = A for A ∈ CI1×···×Ik×J1×···×Jk and

B ∈ CJ1×···×Jk×L1×···×Lk [19].
For a tensor A ∈ CI1×···×Ik×I1×···×Ik , if there exists a tensor B ∈ CI1×···×Ik×I1×···×Ik such that A ∗ B = B ∗ A = I, then A is

said to be invertible and the B is called the inverse ofA and denoted byA−1 [20]. For a general tensorA in CI1×···×Ik×J1×···×Jk ,
its inverse may not exist. But it is shown in [19] that there exists a unique X in CJ1×···×Jk×I1×···×Ik satisfying

A ∗ X ∗ A = A (1.3)

X ∗ A ∗ X = X (1.4)

(A ∗ X )∗ = A ∗ X (1.5)

(X ∗ A)∗ = X ∗ A. (1.6)

The unique X , denoted byA†, is called the Moore–Penrose inverse ofA. Obviously, we haveA†
= A−1 ifA is invertible. The

weighted Moore–Penrose inverse of an even-order tensor was recently introduced in [18]. Many results on the generalized
inverses, the X which only satisfies some of the four Eqs. (1.3)–(1.6), can be found in [21,22]. The Moore–Penrose inverses
of tensors with an alternative product and the application to linear models are documented in [23].

In this paper, we further develop useful and important properties of even-order tensors with Einstein product. We show
that the dimension ofR(A) is equal to that ofR(A∗)which, togetherwith the fundamental theoremof even-order tensors [18],
enables us to define the index and the Drazin inverse of a tensor in CI1×···×Ik×I1×···×Ik . An explicit expression for the Drazin
inverse of a tensor is obtained through its core-nilpotent decomposition. As an application, the Drazin inverse solution
[24–27] of the singular linear tensor equation A ∗ X = B will also be presented at the end of the paper.

2. Further properties of even-order tensors

In this section, we collect a few useful properties of even-order tensors.
Define the null space and the range of A ∈ CI1×···×Ik×J1×···×Jk to be

N(A) = {X ∈ CJ1×···×Jk : A ∗ X = 0} and R(A) = {A ∗ X : X ∈ CJ1×···×Jk}

respectively. It is easily seen that N(A) is a subspace of CJ1×···×Jk and R(A) is a subspace of CI1×···×Ik . The null spaces and
ranges of the tensors A∗ and A∗

∗ A can be defined similarly. The orthogonal complement of a subspace L in CN1×···×Nk is
defined by

L⊥
=
{
X ∈ CN1×···×Nk : ⟨X ,Y⟩ = 0 for all Y ∈ L

}
.

Lemma 2.1. Let A ∈ CI1×···×Ik×J1×···×Jk . Then

(1) N(A)⊥ = R (A∗), R(A)⊥ = N(A∗), R(A∗)⊥ = N(A), and N(A∗)⊥ = R(A);
(2) N(A∗

∗ A) = N(A) and R(A∗
∗ A) = R(A∗).

Lemma 2.1 was established under a more general setting in [18]. When k = 1, it reduces to the fundamental theorem of
linear algebra [28]. Lemma 2.1 has played a key role in establishing an alternative proof, which is much simpler than the one
in [19], for the minimum-norm and least-squares solution to the tensor equationA ∗X = B. It is this result that helps us to
define the index of a ‘‘square’’ tensor, which paves the way to define the Drazin inverses of even-order tensors.

Denote the dimension of a subspace L by dim(L). For a matrix A ∈ Cm×n, we have dim(R(A)) = dim(R(A∗)). For tensors,
we have the following similar result.

Lemma 2.2. Let A ∈ CI1×···×Ik×J1×···×Jk . Then, we have dim (R(A)) = dim (R(A∗)).
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