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a b s t r a c t

We propose a novel finite element based formulation for the solution of the static me-
chanical mixed boundary value problem of a finite elastic solid reinforced by two distinct,
stiff fibre families. The fibre tensions, are assumed decoupled and uniaxial, at out-set. The
associated energy conjugate fibre stretch rates are shown to be uniaxial by duality. The
natively displacement dependent fibre tension–fibre stretch pairs are replaced by auxil-
iary independent variables. The complementary, displacement based, stresses and energy
conjugate strain rates become tensionless and stretch-rate-less in the two fibre directions,
respectively, by construction. An additively decoupled hyperelastic strain energy ansatz in
terms of the fibre stretches and a novel apparently doubly stretchless Cauchy–Green tensor
is used. The displacement based part of the formulation is set in an apparently inextensible
fibre metric space. The proposed uniaxial fibre tension description is statically exact for
the fully constrained problem, and the novel doubly stretchless Cauchy–Green tensor is
conditionally kinematically admissible in its vicinity. The formulation is realised as a five-
field mixed finite element method admitting separate higher order approximations in H1,
for the displacement, and in L2, for the energy conjugate fibre tensions and stretches, re-
spectively. The convergence and correctness of the implementation is verified by numerical
and analytical examples.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Strongly anisotropic finite elastic materials play an essential role in fields including the mechanics of fibre reinforced
rubber-like materials, soft biological tissues and in many other cases. The common source of anisotropy is the high
stiffness contrast between the reinforcing fibres and the surrounding matrix material. Continuum models are popular.
They capture the strong anisotropy using the concept of preferred directions. In the case of soft tissues the strong contrast
is due to the collagen fibres which often show exponential stiffening already at moderate extensions. This phenomenon
evolves into near inextensibility with increasing extension. The limiting fully inextensible problem is not a part of the
standard pure displacement formulation, due to the reactive uniaxial fibre tensions. Approaching it numerically may
cause severe convergence problems, similar to the volumetric locking in near incompressibility. The standard remedy
for near-incompressible finite elasticity involves the well known Flory [1] split of the deformation gradient. It is used in
the popular displacement, pressure and dilatation three-field (U , p̃, J̃) finite element (FE) formulation due to Simo, Taylor
and Pister (STP) [2]. This mixed formulation with adequate approximations in [H1(Ω)]3 and L2(Ω) FE-spaces (Vp/Q
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for the displacement U and the auxiliary variables (p̃, J̃), respectively, provides an effective FE-modelling of isotropic
nearly-incompressible rubber-like hyperelasticity. In Zdunek and Rachowicz [3,4], we extended the mixed STP [2] isotropic
formulation for reinforcement with one family of stiff fibres introducing additional auxiliary variables for fibre tension
ϱ̃ and fibre stretch λ̃. There we developed and tested higher order five-field (U , p̃, J̃, ϱ̃, λ̃) element constructs (Vp/Q
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appropriate mixed residual based a posteriori error estimation and we applied an h-adaptive mesh refinement. Strong
anisotropy has continued to draw our attention [5,6], and recently attracted others attention as well, see Schröder et al. [7].
It is known that FE polynomial enrichments, p ≥ 4, restore a uniform convergence when approaching the incompressible
limit. The generalisation of this recipe to inextensibility is however numerically contradicted in Zdunek and Rachowicz [6].
In other words, approaching the limiting inextensible problem numerically with a pure displacement based theorymay lead
to loss of convergence, even with a higher order polynomial ansatz, p ≥ 4. This novel numerical finding underlines the need
to use mixed methods for strong anisotropy.

Further, the assumption of near-incompressibility for soft tissue, in particular for arteries, is currently questioned on
experimental grounds by Yosibash and collaborators, [8,9]. Adopting this important shift of the paradigm we take into
account that a slight compressibility in combination with a possible inextensibility makes the dilatation in the Flory split [1]
kinematically inadmissible, see Zdunek and Rachowicz [5]. This observation has far reaching consequences, and it is related
to the problems reported byVergori et al. [10]. These and related anomalies are addressed earlier by Sansour [11] and recently
by Nolan et al. [12]. The remedies proposed in [11] and [12] use the Flory split [1] selectively in the isotropic part of strain
energy ansatz but not in its anisotropic part. A related particular element construct with simplified kinematics for strong
anisotropy (SKA) is considered by Schröder et al. [7]. In the described constrained situation (λ̃ = 1, J̃ ̸= 1) we are obliged
to bypass the Flory split all together. In other words, we do not use the common decoupled material description for near-
incompressibility in terms of the dilatation and volume preserving stretch tensor {J, C̄} but use a description for slightly but
finite compressibility. The auxiliary variables in the mixed method concern the fibre stretches and the energy conjugate
fibre tensions. Using a mixed 3-field (U , ϱ̃, λ̃) formulation with hierarchical elements of the type Vp/Q
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finite hyperelasticity we resolved the problem with the isostatic load [10,12]. Further, we extended our residual based a
posteriori error estimation for the compressible 3-field formulation and illustrated an h-adaptive mesh refinement applied
to the pressurisation of the saccular- and fusiform aneurysm-like geometries, in [5] and [6] respectively.

Our previous works [3,4,6,5] were devoted to reinforcement by one rapidly stiffening family of fibres under extension.
There we started in kinematics deriving a generalised right Cauchy–Green tensor by exchanging the inherent displacement
based fibre stretch by an auxiliary independent stretch variable. The associated fibre stretchless right Cauchy–Green tensor
was then obtained by setting the auxiliary fibre stretch to unity. The approach here is fundamentally different. It is based
on statics. Realising that the sum of two simple uniaxial tensions is a projection we split the stress into fibre tension and a
complementary fibre tensionless stress. Further we consider reinforcement by two families of fibres, which stiffen rapidly
under extension. This kind of behaviour is observed in arterial and cardiacmechanicswhere two preferred directions have to
be used. Two distinct families are frequently assumedmechanically equivalent. The field has a rich literature. Much remains,
however, to be done in finite hyperelasticity concerning the theory and a formulationwhich is stable in the inf–sup [13] sense
for the vicinity of the doubly inextensible problem, see Fosdick and MacSithigh [14] and references therein. Criscione and
Hunter [15] developed a framework for extensible continuum finite elasticity for two family fibre reinforcement using the
local orthogonal frame obtained by bisecting the material fibre directions. We develop our theory in the material fibre triad.
It yields new insights, notably to the point-wise shear between the fibre families, i.e. to the stress response due to the change
of angle between the preferred directions. This part of the response is seldom considered.

The remainder of the paper is organised as follows. The description of the kinematics in the fibre triad is presented in
Section 2. The basic assumptionweuse concerns the stress split into superposed uniaxial fibre tensions and a complementary
fibre tensionless stress is stated in Section 3. An apparently doubly stretchless right Cauchy–Green tensor which is
conditionally positive definite is derived by energy conjugate analysis in Section 4. The mixed hyperelastic constitutive
formulation is developed in Section 5. The simple model material is set in Section 6. The mixed five field (U , ϱ̃F

, λ̃F),1
F = 1, 2, Hu–Washizu type FE-formulation is developed in Section 7. The associated mixed element constructs of the
type (Vp/Q
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p−1) are briefly described in Section 7.2. The model examples verifying the correctness of implementation of

the FE-formulation are presented in Section 8. The paper is finalised by a short discussion in Section 9 and summarised and
concluded in Section 10.

Notation. Vectors are denoted by boldface italic lower and upper case letters, e.g. a, b, c andA,B, C respectively. Co-vectors
are denoted with an underset tilde, e.g.

∼
a,

∼
b,

∼
c and

∼
A,

∼
B,

∼
C respectively. Second order tensors are denoted by boldface Roman

or Greek lower and upper case letters, e.g. τ, a, g and S,A,G. Fourth order tensors are denoted by blackboard bold lower
and upper case letters, e.g. p andP respectively. The contraction, duality-pairing, of vectors and co-vectors on a given vector
space V = (F ;R), is denoted as,

⟨•, •⟩V : V ∗
× V → R, (

∼
B,A) ↦→

⟨
∼
B,A

⟩
V

∈ R, (1.1)

where for vectors F = R3. We use the same bra–ket notation (⟨•, •⟩V ) for the double contraction of compatible second
order tensors defined on F = R3

⊗ R3 and on F = sym{R3
⊗ R3

} respectively. Whenever there is no ambiguity to which

1 ϱ̃F
= τ FλF where τ F is the fibre tension in the Kirchhoff sense.
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