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a b s t r a c t

A novel two-level linearized compact alternating direction implicit (ADI) scheme is pro-
posed for solving two-dimensional nonlinear reaction–diffusion equations. The compu-
tational cost is reduced by use of the Newton linearized method and the ADI method.
The existence and uniqueness of the numerical solutions are proved. Moreover, the error
estimates in H1 and L∞ norms are presented. Numerical examples are given to illustrate
our theoretical results.
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1. Introduction

We are interested in developing a two-level linearized compact ADI scheme for solving the following two-dimensional
reaction–diffusion equation

∂u
∂t

− a∆u = f (u), (x, y) ∈ Ω, t ∈ (0, T ], (1.1)

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω, (1.2)

u(x, y, t) = ϕ(x, y, t), (x, y) ∈ ∂Ω, t ∈ (0, T ], (1.3)

where a is a positive constant, f ∈ C2(R), ∆ denotes the Laplacian operator, Ω = (0, 1) × (0, 1) and ∂Ω is the boundary. In
this study, the initial condition u0 and the boundary condition ϕ are assumed to be regular enough and satisfy the condition
that ϕ(x, y, 0) = u0(x, y) when (x, y) ∈ ∂Ω so that the initial–boundary value problem (1.1)–(1.3) admits a smooth solution.

The simplest time discretization for solving the nonlinear reaction–diffusion equation (1.1)–(1.3) is the explicit numerical
schemes. However, they usually suffer the severely restricted temporal step-size [1,2]. Another strategy is to apply the fully
implicit schemes. Although the schemes are usually unconditionally stable, one has to solve a large system of nonlinear
equations at every time level [3–6]. It leads to a considerable computational cost in practical application. A possible

✩ This work is supported by NSFC (Grant Nos. 11571128, 11771162).

* Corresponding author at: School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China.
E-mail addresses: dfli@hust.edu.cn (D. Li), duan@iit.edu (J. Duan).

https://doi.org/10.1016/j.camwa.2018.01.013
0898-1221/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.camwa.2018.01.013
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:dfli@hust.edu.cn
mailto:duan@iit.edu
https://doi.org/10.1016/j.camwa.2018.01.013


Please cite this article in press as: F. Wu, et al., A two-level linearized compact ADI scheme for two-dimensional nonlinear reaction–diffusion equations,
Computers and Mathematics with Applications (2018), https://doi.org/10.1016/j.camwa.2018.01.013.

2 F. Wu et al. / Computers and Mathematics with Applications ( ) –

improvement is to use the linearized implicit (or semi-implicit) schemes. As far as we know, the most widely used second-
order time discretization is the linearized Crank–Nicolsonmethod [7–12] or q-step implicit–explicit schemes [13–19]. These
schemes require at least two starting values, which are obtained by the initial values and an additional predictor schemes
or iterative schemes.

The goal of this paper is to develop a linearized compact ADI scheme for solving the nonlinear reaction–diffusion
equations (1.1)–(1.3) and present optimal error estimates in the sense of H1 and L∞ norms. The time discretization is
achieved via a combination of Crank–Nicolson scheme and a Newton linearized method for the nonlinear term, and the
spatial discretization is performed by using the compact finite difference method. The highlights of the present work are

• The proposed method is a linearized and two-level scheme, which only requires only one starting value. This is sharp
contract to the Crank–Nicolson method or q-step implicit–explicit schemes.

• By applying the ADI method, the two-dimensional reaction–diffusion equation is reduced to independent systems of
one-dimensional problems. The computational cost is reduced.

• For the nonlinear problems, it is proved that the proposed scheme has the convergence order of 2 in temporal
direction and the convergence order of 4 in spatial direction in H1 and L∞ norms, respectively, while the previous
investigations mainly focus on error estimates for the linear problems [20–22] or L2-error estimates for nonlinear
problems [10,23,24].

The rest of the paper is organized as follows. In Section 2, we propose the Newton linearized compact ADI scheme for
solving the problem (1.1)–(1.3). In Section 3, the convergence of the scheme is investigated. In Section 4, we present several
numerical experiments to verify the theoretical results. Finally, we give some conclusions in Section 5.

2. Construction of the two-level linearized compact ADI scheme

In this section, we present the two-level linearized compact ADI scheme for solving problem (1.1)–(1.3).
Let τ =

T
K and h =

1
M be the temporal and spatial stepsize, respectively, where K and M are two positive integers.

Set tk = kτ , tk− 1
2

=
tk+tk−1

2 (k = 1, . . . , K ), Ωτ = {tk|0 ≤ k ≤ K }, xi = ih, yj = jh, (0 ≤ i, j ≤ M) and
Ω̄h = {(xi, yj)|0 ≤ i, j ≤ M}, Ωh = Ω̄h ∩ Ω and ∂Ωh = Ω̄h ∩ ∂Ω . Let Vh = {vk

i,j| i, j = 0, 1, 2, . . . ,M, k = 0, 1, . . . , K } be
grid function space defined on Ωh × Ωτ . Define
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Denote

∥vk
∥∞ = max

1≤i,j≤M−1
|vk
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similarly, norms ∥δyv
k
∥, ∥δ2yv

k
∥, ∥δyδxv

k
∥ can also be defined. The H1 semi-norm and H1 norm are defined as |vk

|1 =√
∥δxvk∥2 + ∥δyvk∥

2 and ∥vk
∥1 =

√
∥vk∥2 + |vk|1

2, respectively.
Besides, we introduce the compact difference operators

Avk
i,j =

⎧⎨⎩(1 +
h2

12
δ2x )v

k
i,j, 1 ≤ i ≤ M − 1, 0 ≤ j ≤ M,

vk
i,j i = 0 or M, 0 ≤ j ≤ M,

Bvk
i,j =

⎧⎨⎩(1 +
h2

12
δ2y )v

k
i,j, 0 ≤ i ≤ M, 1 ≤ j ≤ M − 1,

vk
i,j 0 ≤ i ≤ M, j = 0 or M.

The following lemma was proved in [25]. It plays an important role in developing the compact scheme.

Lemma 1 ([25]). Assume that g(x) ∈ C6
[xi−1, xi+1]. Then

1
12

[
g ′′(xi−1) + 10g ′′(xi) + g ′′(xi+1)

]
−

1
h2

[
g(xi−1) − 2g(xi) + g(xi+1)

]
=

h4

240
g (6)(ωi),

where ωi ∈ (xi−1, xi+1).
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