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a b s t r a c t

Based on exponential time differencing approach, an efficient second order method is
developed for solving systems of partial integral differential equations. The method is
implemented to solve American options under multi-state regime switching with jumps.
The method is seen to be strongly stable (L-stable) and avoids any spurious oscillations
caused by non-smooth initial data. The predictor–corrector nature of the method makes
it highly efficient in solving nonlinear PIDEs in each regime with different volatilities and
interest rates. Penalty method approach is applied to handle the free boundary constraint
of American options. Numerical results are presented to illustrate the performance of the
method for American options under Merton’s jump–diffusion models. Padé approxima-
tion of matrix exponential functions and partial fraction splitting technique are applied
to construct computationally efficient version of the method. Efficiency, accuracy and
reliability of the method are compared with those of the existing methods available in the
literature.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The pricing option problems in regime-switching models have drawn considerable attention, see for example [1–3]
and references therein. These models are capable of modeling non-constant and randommarket parameters, like, volatility
and interest rate. The asset prices in these models are dictated by a number of stochastic differential equations which are
coupled by a finite-state Markov chain representing randomly changing economical factors. Drift and volatility coefficients
are assumed to depend on the Markov chain and are allowed to take different values in different regimes resulting in a
situation where both continuous dynamics and discrete events are present.

American option under mo regimes satisfies a system of mo free boundary value problems. An (optimal) early exercise
boundary is associated with each regime. The use of penalty approach results in a system of mo coupled nonlinear partial
differential equations inmo states. Recently, Holmes et al. [4] developed a front-fixing finite elementmethod for the valuation
of American options with regime switching. However their approach is restricted to only two regimes. Khaliq et al. [5]
generalized the idea of penalty term to regime-switching case by adding a penalty term to each of the mo systems of PDEs
which results in solving each system on a fixed rectangular domain.

Contrary to models with continuous paths, jump–diffusion models allow large sudden changes in the price of the
underlying asset. The driving Brownian motion is a continuous process which makes it difficult to fit the market data with
large fluctuations. Large market movements as well as a great amount of information arriving suddenly (i.e. a jump) lead to
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the study of jump–diffusionmodels. In order to include the influence ofmacroeconomic factors on the behavior of individual
asset prices, regime-switching models are considered in recent years, see [6]. In [7], Merton proposed to include jumps
into the Black–Scholes model. The rational for including a jump component in a diffusion model is due to large market
movements. A regime-switching jump–diffusion model proposed in [8] includes both jump and regime-switching in an
appropriate way.

For pricing American options under regime-switching stochastic process, Huang et al. [9] analyze a number of techniques
including both explicit and implicit discretizations. They compared a number of iterative procedures for solving the
associated nonlinear algebraic equations. Their numerical experiments indicate that a fixed point policy iteration, coupled
with a direct control formulation, is a reliable general purpose method.

Jump–diffusion model proposed by Merton [7] is considered in this paper. Unlike Black–Scholes model, Jump–diffusion
models do not have closed form solution. Therefore, several numerical studies have been conducted for pricing options
under jump–diffusion models. Alternating Directions Implicit (ADI) finite difference method combined with the discrete
Fourier Transform DTF has been used by Andersen and Andreasen [10]. Whereas, Multinomial trees method was suggested
by Amin [11] but this method is restricted by the number of time steps, and it is just of first order convergence. Almendral
and Oosterlee in [12] proposed operator-splitting technique with iterative methods for European options. Implicit explicit
(IMEX) finite difference method was proposed by Cont et al. [13] to avoid a full dense matrix inversion.

We present and analyze a strongly stable numerical method for solving the American option problems with multi-state
regime switching jump–diffusion. It combines the penalty method [14] with an implicit predictor–corrector scheme and
utilizes (0, 2)-Padé approximation to thematrix exponential functions which leads to a positivity preserving, strongly stable
and reliable numerical method in each regime. These are essential tools to handle the problem due to nonsmooth payoff, see
for example, Yousuf et al. [15]. Partial fraction splitting technique is applied to construct computationally efficient version
of the method which can also be implemented in parallel.

We intend to numerically solve a partial integral differential equation (PIDE) arising in the jump–diffusion model.
Numerical solutions of the coupled systems of nonlinear partial integral differential equations are obtained using the
following steps. Free boundary value system is converted to a system over a fixed temporal domain using penalty method
approach. Spatial discretization of the differential and integral operators converts the system of PIDEs to a system of ODEs.
Exact solution of each ODE in the system iswritten using Duhamel’s principle and L-stable predictor–corrector time stepping
method is applied to approximate the solution. Although themethod is applicable tomany states regime switching problems,
we implemented it to solve American put option and American butterfly option with four regimes under jump–diffusion
model. We compare the results of the new method with some existing method in the literature. Numerical results are
reported to illustrate the second order convergence in time.

This paper is organized as follows. In Section 2 we state the PIDE in regime-switching with jump–diffusion model for
pricing American options. In Section 3 we describe the differential and integral operator discretization. Section 4 is devoted
to the development of time stepping scheme, stability of the method and algorithm to implement the method. Numerical
experiments are given in Section 5. American put option and American butterfly option problems are solved in this section.
Convergence tables are given for the American put option at the strike price for each regime. Reliability of the method
through out the time domain is shown by time evolution graphs. Efficiency of the method is also given in this section by
comparing CPU time with an other method. Conclusion and future work direction is given in Section 6.

2. Regime-switching jump–diffusion model

We consider a continuous-time Markov chain αt which takes values among mo different states where each state
represents a particular regime. The state space of αt is given by M := {1, . . . ,mo} and the matrix Q = (qij)mo×mo denotes
the generator of αt . It is assumed that Q is known and its entries qij satisfy the following:

(I) qij ≥ 0 if i ̸= j;
(II) qii ≤ 0 and qii = −

∑
j̸=iqij for each i = 1, . . . ,mo.

See for example, Yin and Zhang [16].
Introducing a Markov chain αt into the option pricing model will result in an incomplete market which implies that

the risk-neutral measure is not unique. To determine a risk-neutral measure for option pricing, one can employ a regime-
switching random Esscher transform [17]. Let the risk-neutral probability space (Ω,F, P̃) is given and let B̃t be a standard
Brownian motion defined on (Ω,F, P̃) and assume it is independent of the Markov chain αt . We consider the following
regime-switching geometric Brownian motion (GBM) for the risk-neutral process of the underlying asset price S:

dS
S

= µαt dt + σαt d̃Bt + dJαt , t ≥ 0, (1)

where σαt is the volatility of the asset S andµαt = rαt −Dα −λαt κ is the drift rate for each regimewith risk-free interest rate
rαt ≥ 0,Dα is the continuous dividend yield. Since both σαt and rαt are assumed to depend on the Markov chain αt , they can
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