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a b s t r a c t

We study a posteriori error control of finite element approximation of the elliptic obstacle
problem with nonhomogeneous Dirichlet boundary condition. The results in the article
are two fold. Firstly, we address the influence of the inhomogeneous Dirichlet boundary
condition in residual based a posteriori error control of the elliptic obstacle problem.
Secondly by rewriting the obstacle problem in an equivalent form, we derive a posteriori
error bounds which are in simpler form and efficient. To accomplish this, we construct
and use a post-processed solution ũh of the discrete solution uh which satisfies the exact
boundary conditions sharply although the discrete solution uh may not satisfy.We propose
two post processing methods and analyze them, namely the harmonic extension and a
linear extension. The theoretical results are illustrated by the numerical results.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The elliptic obstacle problem is a popular prototype model for the study of elliptic variational inequalities. The applica-
tions of variational inequalities are enormous in the modern scientific computing world, e.g. in contact mechanics, option
pricing and fluid flow problems. The numerical analysis of these classes of problems is an interesting subject as they offer
challenges both in theory and computation. We refer to the books [1–4] for the theory of variational inequalities and their
corresponding numerical analysis. Apart from these, we refer to the articles [5,6] and the recent articles [7–11] for the
convergence analysis of finite element methods for the obstacle problem. One of the interesting properties that the obstacle
problemexhibits is the free boundary alongwhich the regularity of the solution is affected. It isworth remarking here that the
location of free boundary is not known a priori. Adaptive finite element methods based on reliable and efficient a posteriori
error estimates are of particular interest in this contest as they can capture the free boundaries by local mesh refinement
around them. In designing any adaptive scheme, the first step is to derive some computable error estimators which are both
reliable and efficient, see [12] for the analysis of a posteriori error control. There are many works in deriving residual based a
posteriori error estimates for the obstacle problem, see [13–24] and see [25–28]. In recent years, much of research is focused
on proving the convergence of adaptive methods based on a posteriori error estimates. In this direction, we refer to [29–34]
for the work related to the obstacle problem. Further, we refer [35–38] and [39–42] for the work related to the numerical
approximation of the Signorini contact problem.

In many occasions, it is assumed for the convenience in a posteriori error analysis of obstacle problems that the Dirichlet
data is either zero or trace of a finite element function. However it is not clear if the error estimator with homogeneous
Dirichlet boundary condition is reliable and efficient in the energy norm up to some Dirichlet data oscillations. The answer
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to this question so far seems to be not clear as it can be seen in [32, Section 4.2] that the error estimator is proved only
weakly reliable with nonhomogeneous Dirichlet boundary data oscillations. Exceptions to this question hold for the local
error analysis (estimates in maximum norm) in [21,43] where reliable and efficient error estimates were derived for general
Dirichlet boundary data. One of the difficulties in the energy norm error estimate arises due to the fact that the error u − uh
does not belong to H1

0 (Ω). It will be difficult to argue with the residual directly using the error u − uh. We may think of
introducing an auxiliary problem correcting this as in the case of linear elliptic problems, but with this the estimator may
consists of the unknown solution of that auxiliary problem. In this article, we introduce two methods namely harmonic
extension (see [44,45]) and linear extension for constructing a post-processed solution in which the later can be computed
explicitly. We also derive some estimates to quantify the error between the discrete and its post-processed solution. It is
worth mentioning here that both the extensions are positive preserving and the linear extension is optimally convergent
in L2-norm as well. Subsequently, we address the question of proving the reliability and efficiency of the error estimator
up to some Dirichlet data oscillations as in the case of linear elliptic problems. The results also can be viewed in another
aspect that since the obstacle problemwith a general obstacle χ can be transformed into a problemwith zero obstacle with
nonhomogeneous Dirichlet boundary condition, for example see [32], the error estimator for general obstacle problem can
be simplified to the error estimator for the zero obstacle. Generally, the error estimator for zero obstacle problem is simpler,
for example free of min/max functions, dealing with nonconformity in the approximation of obstacle constraint.

The rest of the article is organized as follows. In the remaining part of this section, we introduce the model problem and
some preliminaries. In Section 2, we introduce some notation, define the discrete problem and derive some properties of the
discrete solution. In Section 3, we construct a post-processed discrete solution. We propose two methods for this purpose.
One of them is by harmonic extension and the other by linear extension. Therein, we derive some error estimates for the
discrete solution and its post-processed solution. In Section 4, we present the a posteriori error analysis. In Section 5, we
derive error bounds that are simpler by rewriting general obstacle problem into a problem with zero obstacle. We present
some numerical experiments in Section 6 to illustrate the theoretical findings and finally conclude the article in Section 7.

Let Ω ⊂ R2 be a bounded polygonal domain with boundary denoted by ∂Ω (without slit). However the results on
harmonic extension and the results in Section 5 are applicable to three dimensional problems. We consider the obstacle
χ ∈ C(Ω̄)∩H1(Ω) satisfying χ |∂Ω ≤ g a.e. on ∂Ω , hereafter the function g is assumed to be given and denotes the Dirichlet
boundary data. Further, we assume that g is the trace of a H1(Ω) function. Define the closed and convex set by

K := {v ∈ H1(Ω) : v ≥ χ a.e. inΩ, γ0(v) = g on ∂Ω},

where γ0 : H1(Ω) → L2(∂Ω) is the trace map, whose range is denoted by H̃1/2(∂Ω). Since g ∈ H̃1/2(∂Ω), there is some
g̃ ∈ H1(Ω) with γ0(g̃) = g . Then it can be seen that the set K is nonempty as χ+

:= max{χ, g̃} ∈ K. The model problem for
the discussion consists of finding u ∈ K such that

a(u, v − u) ≥ (f , v − u) for all v ∈ K, (1.1)

where a(u, v) := (∇u,∇v) and f ∈ L2(Ω) is a given function. Hereafter, (·, ·) denotes the L2(Ω) inner-product while ∥ · ∥

denotes the L2(Ω) norm. For any open set D, we denote by ∥ · ∥Hm(D) (resp. |·|Hm(D)) the standard norm (resp. semi-norm) on
the Sobolev space Hm(D), see [46]. The existence of a unique solution to (1.1) follows from the result of Stampacchia [1–3].

For the rest of the discussions, we assume that the Dirichlet data g ∈ H̃1/2(∂Ω) ∩ C(∂Ω).
Define the Lagrange multiplier σ ∈ H−1(Ω) by

⟨σ , v⟩ = (f , v) − a(u, v) for all v ∈ H1
0 (Ω), (1.2)

where ⟨·, ·⟩ denotes the duality bracket of H−1(Ω) and H1
0 (Ω). The norm on H−1(Ω) is denoted by ∥ · ∥−1. It follows from

(1.2) and (1.1) that

⟨σ , v − u⟩ ≤ 0 for all v ∈ K. (1.3)

Note that in Eq. (1.3), the test function v − u ∈ H1
0 (Ω) and hence the duality bracket ⟨σ , v − u⟩ is meaningful.

2. Notation and preliminaries

Below, we list the notation that will be used throughout the article:

Th := a regular simplicial triangulations ofΩ
T := a triangle of Th, |T | := area of T
hT := diameter of T , h := max{hT : T ∈ Th}

V i
h := set of all vertices of Th that are inΩ

Vb
h := set of all vertices of Th that are on ∂Ω

VT := set of three vertices of T

E i
h := set of all interior edges of Th
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