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a b s t r a c t

In this work, we propose a finite element method for solving the linear poroelasticity
equations. Both displacement and pressure are approximated by continuous piecewise
polynomials. The proposed method is sequential, leading to decoupled smaller linear
systems compared to the systems resulting from a fully implicit finite element approach. A
priori error estimates are derived. Numerical results validate the theoretical convergence
rates.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The Biot poroelasticity system [1–3] is widely used in several industries such as petroleum and environmental engineer-
ing [4,5] and medical applications such as the modeling of the intestinal oedema [6] and cartilage degeneration [7]. The
model describes the displacement of a porous medium subject to fluid motion through the pore space.

The differential equations describing the Biot system in the open domain Ω ⊂ Rd, d = 2, 3 over the time interval [0, T ],
are defined as follows

∂t (c0p + ∇ · (αu)) − ∇ · (κ∇p) = f , in Ω × [0, T ], (1)
− ∇ · (Ge(u) − αpI) = g, in Ω × [0, T ]. (2)

The displacement, u, of the porous medium and the pressure, p, of the fluid are the primary variables of the Biot system. The
problem coefficients are the constrained specific storage coefficient, c0, and the Biot–Willis coefficient α, with c0 ≥ 0 and α

in ]0, 1]. The coefficient κ is the ratio of the permeability coefficient and the fluid viscosity. The system is completed by the
following boundary and initial conditions:

u = 0, p = 0, on ∂Ω × [0, T ], (3)
p = p0, u = u0, in Ω × {0}. (4)

In the momentum equation (2), the stress tensor Ge(u) is the classical linear elasticity tensor, with Lamé parameters λ, µ:

Ge(u) = 2µe(u) + λ(∇ · u)I,
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and the strain tensor e(u) is defined as follows

e(u) =
1
2
(∇u + ∇uT ).

To solve the Biot system, four approaches have been proposed: (i) the implicit approachwhere the fully coupled system is
solved, (ii) the loosely explicit where themechanical response is only updated every few time steps, (iii) the iterative scheme
where a set of equations is solved iteratively at every time step until a certain tolerance is reached, and (iv) the sequential
method where the system is completely decoupled and no iterations are needed. The advantage of the latter method is the
reduction of the computational cost compared to the fully implicit approach since themethod exhibits smaller linear systems
to which we can apply standard linear solvers whereas the implicit method might suffer ill-conditioning [8] and special
solvers have to be used [9,10]. Furthermore, unlike the iterative scheme, the sequential method does not require several
iterations at each time step for convergence. At the continuous level, the convergence of the iterative coupling was proved
in [11] and numerical results shown in [12]. Error analysis of the fully implicit approach for various spatial discretizations
was carried out in several papers [13–18].

In [19], we analyzed the sequential approach based on a discontinuous Galerkin discretization. We propose to use the
sequential approachwith the continuous finite elementmethod to discretize the Biot poroelasticity system.We show that by
adding stabilization terms as in [19], Eqs. (1) and (2) can be decoupled; and we derive error estimates and therefore extend
the sequential approach to the continuous finite element method. This paper follows closely our previous work [19] and
the error analysis is based on a similar argument. In [19] we use discontinuous approximations and impose the boundary
conditions weakly. In the current paper, the boundary conditions are imposed strongly. Stronger results are obtained in
the sense that the stabilization parameter is computable and shown to depend on problem parameters. The choice of the
continuous finite element method is justified by its lower computational cost and its simplicity in implementing piecewise
linear elements compared to the various face computations of the discontinuous Galerkin method. We also note that the
finite element method is widely used to solve the poroelasticity equations [5,20–22] and our proposed formulation can be
easily implemented in legacy codes.

An outline of the paper is as follows. We describe the numerical scheme in Section 2. We introduce the projection
operators alongwith preliminary results in Section 3. The error analysis is carried out in Section 4 and is validated in Section 5
numerically.

2. Numerical scheme

We begin by defining the triangulation of Ω and then introduce the numerical scheme. We partition the domain Ω into
triangles in R2 and tetrahedra in R3 such that h is the maximum diameter over all elements in the mesh, denoted by Eh. We
assume that the mesh is nondegenerate i.e. there exists a constant τ > 0 independent of h, such that

hE

ρE
≤ τ , ∀E ∈ Eh,

where hE is the diameter of the element E and ρE is the diameter of the largest ball inscribed in E.
Let k1 ≥ 1 and k2 ≥ 1 be two integers; we define the following discrete spaces

Xh
= {v ∈ C0(Ω)d ; ∀E ∈ Eh, v|E ∈ Pk1 (E)

d
},

Mh
= {q ∈ C0(Ω) ; ∀E ∈ Eh, q|E ∈ Pk2 (E)},

Xh
0 = {v ∈ Xh

; v = 0 on ∂Ω},

Mh
0 = {q ∈ Mh

; q = 0 on ∂Ω},

where Pk(E) is the space spanned by polynomials of degree at most k on the element E.
For the discrete spaces Xh

0 andMh
0 , we associate the following energy norms:

∥v∥X = ∥e(v)∥L2(Ω) , ∀v ∈ Xh
0 , (5)

∥q∥M = ∥κ1/2
∇q∥L2(Ω), ∀q ∈ Mh

0 . (6)

The classical Sobolev spaces are denoted byHk(Ω) and are equippedwith the usual Sobolev norms ∥·∥Hk(Ω) and semi-norms
|·|Hk(Ω). We let (·, ·)Ω denote the L2 inner product on the domain Ω and define the following bilinear forms:

a(p, q) = (κ∇p, ∇q)Ω , ∀p, q ∈ H1
0 (Ω), (7)

c(u, v) = (Ge(u), e(v))Ω , ∀u, v ∈ (H1
0 (Ω))d, (8)

b(v, q) = −α(v, ∇q)Ω , ∀v ∈ (H1
0 (Ω))d, ∀q ∈ H1

0 (Ω). (9)

We solve Eqs. (1)–(2) at the discrete times ti = i∆t , i = 0, 1, . . . ,N where ∆t > 0 denotes the time step and tN = T . The
decoupling approach consists of two steps:
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