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a b s t r a c t

In this work we propose using the method of fundamental solutions (MFS) to solve
boundary value problems for the Helmholtz–Beltrami equation on a sphere. We prove
density and convergence results that justify the proposed MFS approximation. Several
numerical examples are considered to illustrate the good performance of the method.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The numerical solution of boundary value problems (BVPs) for partial differential equations (PDEs) usually relies on
methods that require a mesh structure where not only the discretization nodes are required, but also the connections
between them. The geometrical discretization plays an important role in thesemethods, such as the classical finite difference
or finite element methods, commonly used to solve BVPs for PDEs.

To avoid the constraints due to mesh based methods, several meshless methods have been proposed that have both
advantages and disadvantages. Here wewill focus on theMethod of Fundamental Solutions (MFS), which can be viewed as a
variant of the Boundary ElementMethod (BEM), that avoids themesh on the boundary, and singular integration e.g. [1–4]. On
the other hand, the MFS presents some difficulties as it generates ill conditioned matrices, and its exponential convergence
can only be obtained for analytic boundary data.

In the case of PDEs defined on surfaces of spheres or other manifolds, that appear in problems of applications related to
image processing, biology or fluid dynamics [5–7], the use of a geometrical approximation in mesh based methods, brings a
new discretization error, that is due to the curvature of the space of the manifold.

Some recent work in these methods include projections onto an approximation of the manifolds from plane triangles [8],
the closest pointmethod [9], the orthogonal gradientsmethod involving radial basis functions [10] and others such as surface
parametrization [11] and embedding functions [12].

In this work we propose the use of the MFS to solve BVPs when the PDE is defined on the surface of a manifold. This
is mainly restricted to the cases where a fundamental solution of the PDE is available, and here this not only depends on
the PDE that we are considering, but also on the manifold itself. Therefore we consider the manifold to be a sphere and the
Helmholtz equation defined with the Laplace–Beltrami operator, where a known expression of the fundamental solution is
available.
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In a recent work [13] the BEM was extended to solve BVPs on the surface of a sphere for the Helmholtz, or Yukawa–
Beltrami equation. Therefore we also consider an adaptation of theMFS for the same type of problems, using layer potentials
that are defined in this context (see for instance, [13,14]).

In Section 2 we establish some density results that justify the MFS approximation, and a convergence result. In Section 3
we present the algorithm and finally in Section 4 we show the excellent performance of the MFS with some numerical
experiments.

2. Dirichlet BVP on manifolds

Let Ω̄ ⊂ Rd+1 be a compact convex set with analytical boundary Γ = ∂Ω, and we will consider its boundary that
defines a d-dimensional smooth manifold. In this setting we may consider the manifold internal domain ω ⊆ Γ , and its
complementary domain

ωc = Γ \ ω̄,

where ω̄ is the closure of ω with respect to the topology induced in Γ .
Wewill be focusing on the case where Ω is a 3D ball and ω is a non void open surface on the sphere ∂Ω. In this case the

boundary of the surface ω is the contour line γ = ∂ω, that is non void whenever ω ̸= Γ , and we assume this contour to be
connected and piecewise regular, say C2.

Now consider the Dirichlet boundary value problem:{
(∆Γ + λ)u = 0, in ω ⊂ Γ ,

u = g, on γ = ∂ω
(1)

where λ ∈ C is some constant and ∆Γ is the Laplace–Beltrami operator acting on Γ , defined by ∆Γ u = ∇Γ · ∇Γ u with
∇Γ u = ∇u − (n · ∇u)n being the tangential gradient, where n stands for the normal to the sphere. The eigenvalues µk of
the Laplace–Beltrami operator over Γ would lead to non uniqueness issues when ω = Γ . A similar situation occurs when
ω ⊂ Γ , as problem (1) may lead to non unique solutions if λ = λk is one of the Dirichlet eigenfrequencies associated with
∆Γ on the domain ω.

3. Density results (Helmholtz case)

The fundamental solution φ of the Helmholtz–Beltrami operator verifies

(∆Γ + λ)φ(x, y) = δΓ (x, y), ∀x, y ∈ Γ .

This equality with the Dirac delta is understood in the sense of distributions, with test functions v ∈ D(Γ ) (e.g. [15]):

⟨Dφ(x, ·), v⟩L2(Γ ) = ⟨δΓ (x, ·), v⟩L2(Γ ) = v(x).

In the case of the sphere, the fundamental solution is known to be

φλ(x, y) =
1

4 sin (πV (λ))
PV (λ) (−x.y) , x, y ∈ S2, (2)

with

V (λ) =
−1 +

√
1 + 4λ

2
and where Pα are Legendre functions of the first kind (e.g. [16,17]). Note that this fundamental solution is not defined when
V (λ) ∈ N, or λ = n(n + 1), which are the eigenvalues of the Laplace–Beltrami operator for the whole sphere, and for these
exceptional cases a generalized fundamental solution can be considered (e.g. [17]).

For instance, when λ = 0, the fundamental solution of the Laplace–Beltrami operator reduces to

φ0(x, y) =
1
4π

log(2 − 2x.y) (3)

which is the same formula that we have for the Euclidean plane, taking into account that ∥x− y∥2
= 2− 2x.y, in the unitary

sphere.
These fundamental solutions are therefore radial, depending only on the Euclidean distance r = ∥x − y∥.

3.1. Contour layers

We introduce the notion of contour layers in a similar way as boundary layers, adapting to the casewhere the domainω is
itself part of a closed Riemannian manifold. Thus, in R3 these domains ω are parts of (analytic) surfaces, and their boundary
becomes a contour γ . With respect to ω a regular C1 contour γ has an associated normal vector ν(x), for each x ∈ γ . Note
that this normal vector ν belongs to the tangent bundle of Γ and points outwards ω.
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