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a b s t r a c t

In this article, we propose a second-order uniformly convergent numerical method for a
singularly perturbed 2D parabolic convection–diffusion initial–boundary-value problem.
First, we use a fractional-step method to discretize the time derivative of the continuous
problem on uniformmesh in the temporal direction, which gives a set of two 1D problems.
Then, we use the classical finite difference scheme to discretize those 1D problems on
a special mesh, which results almost first-order convergence, i.e., O(N−1+β lnN + ∆t).
To enhance the order of convergence to O(N−2+β ln2N + ∆t2), we use the Richardson
extrapolation technique. In support of the theoretical results, numerical experiments are
performed by employing the proposed technique.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider the following singularly perturbed 2D parabolic convection–diffusion initial–boundary-value
problem (IBVP) posed on the domain G = D ×Ωt , whereD = Ix × Iy = (0, 1)2 andΩt = (0, T ]:⎧⎨⎩

ut + Lεu(x, y, t) = f (x, y, t), (x, y, t) ∈ G,

u(x, y, 0) = φ(x, y), (x, y) ∈ D,

u(x, y, t) = 0, (x, y, t) ∈ ∂D ×Ω t ,

(1)

where

Lεu = −ε∆u + a(x, y).∇u + b(x, y)u,

0 < ε ≪ 1 is the perturbation parameter. The coefficients a = (a1, a2) and b are assumed to be sufficiently smooth and
bounded functions such that a1(x, y) ≥ αx > 0, a2(x, y) ≥ αy > 0 and b(x, y) ≥ 0, onD.

Under the sufficient smoothness and necessary compatibility conditions [1] imposed on the functions f andφ, the
parabolic IBVP (1) admits a unique solution u(x, y, t), which exhibits a regular boundary layer of width O(ε) along the sides
x = 1 and y = 1, and a corner layer at (x, y) = (1, 1) [2].
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u Solution of the model problem (1)
v, w Smooth and singular components of u
ûn+1 Solution of the semidiscrete problem (5)–(6) onΩM

t
ẑn+1 Solution of the semidiscrete problem (5)–(6) onΩ2M

t
ûextpt Solution of the semidiscrete problem (5)–(6) onΩM

t after time extrapolation
v̂n+1/2, ŵn+1/2 Smooth and singular components of ûn+1/2 onΩM

t

ψ̂
n+1/2
v , ψ̂

n+1/2
w Smooth and singular components of ẑn+1/2 onΩ2M

t
Ûn+1 Solution of (16)–(17) onDN with M mesh intervals in the temporal direction
Ũn+1 Solution of (16)–(17) onD2N with 2M mesh intervals in the temporal direction
U Solution of the fully discrete problem (20)–(21) on GN,M

V̂ n+1/2, Ŵ n+1/2 Smooth and singular components of Ûn+1/2 onDN with M mesh intervals in the temporal direction
V̂n+1/2, Ŵn+1/2 Smooth and singular components of Ûn+1/2 onDN with 2M mesh intervals in the temporal direction
V̂extpt , Ŵextpt Smooth and singular components after time extrapolation onDN withM mesh intervals in the temporal

direction
V̂extpt , Ŵextpt Smooth and singular components after time extrapolation on D2N with M mesh intervals in the

temporal direction
Ûextp Solution of (16)–(17) after both space and time extrapolation onDN withM mesh intervals in the temporal

direction
V̂extp, Ŵextp Smooth and singular components of Ûextp after both space and time extrapolation on DN with M mesh

intervals in the temporal direction
Uextp Final extrapolated solution of the fully discrete problem (20)–(21) on GN,M

This type of problem occurs in several branches of engineering and applied mathematics, such as skin layers in electrical
application, edge layers in solid mechanics and boundary layers in fluid mechanics [3]. For example, consider the unsteady
incompressible viscous fluid flow problem governed by the Navier–Stokes equation:⎧⎨⎩

∂u
∂t

+ u · ∇u + ∇p =
1
Re

∇
2u,

∇ · u = 0,

where u is the velocity field whose components are u1, u2 along x and y directions, and p is the pressure. For sufficiently
large value of the Reynolds number (Re), the above equation behaves like a singular perturbation problem (SPP). One can
observe that the solution of SPP varies rapidly inside the boundary layer region and behaves smoothly in the outer region.
Due to such behavior, classical finite differencemethods fail to provide satisfactory numerical result on uniformmeshes and
as a remedy one needs to reduce the spatial step size with respect to ε, to obtain a stable solution, which is computationally
expensive.

Two of the most reliable numerical methods for solving such type of problems which are available in the literatures
are fitted operator methods (FOMs) and fitted mesh methods (FMMs). In FOMs, one uses an exponentially fitted scheme,
which has coefficients of exponential type adapted to the SPP. The extension of FOMs to higher-dimensional problems are
too difficult and in some cases it may not be even possible. Whereas, in FMMs, one can use the classical finite difference
schemes on the piecewise-uniform (Shishkin) mesh or any other layer-adapted nonuniform meshes. In FMMs, the meshes
are fine in the boundary layer regions and coarse in the outer region. More information about the layer-adapted nonuniform
meshes and the numerical schemes for SPPs can be found in the books of Farrell et al. [4], Miller et al. [5], and Roos et al. [2].

Due to the presence of boundary layers in SPPs, finding higher-order ε-uniformly convergent numerical solution to SPPs is
indeed a difficult task. To obtain even second-order uniform convergence for the case of convection–diffusion SPPs, one has
to devise the numerical scheme very cautiously. One cannot simply approximate the convection term by central difference
quotient, because it leads to spurious nonphysical oscillations in the numerical solution. Therefore, one has to give some
special attention to obtain second-order convergent numerical solutions for SPPs having convection term. One can surpass
such difficulty by using the hybrid scheme of [6], or by the Richardson extrapolation technique [7–9].

Since, the problem considered in this article is two-dimensional in space, it can model a physical phenomenon more
appropriately. One can find the numerical treatment of such a problem in [10–13], where the authors of [10,11] considered
the stationary case and [12,13] are dedicated for time dependent problem. The authors of [14] solved such problem by
using the backward-Euler scheme for time derivative and the upwind finite difference scheme for spatial derivatives. But
the drawback in this scheme is that, to obtain the numerical solution, one has to handle a banded pentadiagonal matrix
at each time step, which is not very efficient in computational perspective. One can overcome such difficulty by using the
fraction-step method, which converts the 2D problem into two 1D problems. Clavero et al. [13] used this method to solve
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