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a b s t r a c t

In this paper, we present an optimal compact finite difference scheme for solving the 2D
Helmholtz equation. A convergence analysis is given to show that the scheme is sixth-order
in accuracy. Based on minimizing the numerical dispersion, a refined optimization rule for
choosing the scheme’s weight parameters is proposed. Numerical results are presented
to demonstrate the efficiency and accuracy of the compact finite difference scheme with
refined parameters.
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1. Introduction

In this paper, we consider the 2D Helmholtz equation

Lu := ∆u + k2u = g (1.1)

with the wavenumber k, where ∆ :=
∂2

∂x2
+

∂2

∂y2
is the 2D Laplacian, unknown u usually represents a pressure field in the

frequency domain, and g denotes the source function. The Helmholtz equation has important applications in many fields
of science and engineering, for instance, in aeronautics, geophysics and optical problems. Therefore, it has always been an
active field of research to solve the Helmholtz equationmore efficiently and accurately (see [1–6] and the reference therein).

For numerically solving the Helmholtz equation, there aremainly finite differencemethods (cf. [3,7,8]) and finite element
methods (cf. [1,2,9]). As is known to all, the solution of theHelmholtz equation oscillates severely for largewavenumbers, and
the quality of the numerical results usually deteriorates as the wavenumber k increasing, which is the so-called ‘‘pollution
effect’’ of highwavenumbers [2,9]. For the 2D and 3DHelmholtz equations, the pollution effect of highwavenumbers cannot
be eliminated [2]. Due to the pollution effect of high wavenumbers, the wavenumber of the numerical solution is different
from the one of the exact solution, which is known as ‘‘numerical dispersion’’ [9]. Due to the numerical dispersion, the
numericalmethod usually requires a finermesh to ensure the accuracywith the increasingwavenumber. Hence, to discretize
the Helmholtz equation, we should pay attention to two issues: one is the numerical dispersion, while the other is the solver
cost. In the past years, there is a growing interest in discretization methods where the computational complexity increases
only moderately with increasing wavenumber (cf. [1,3,5,10] and the reference therein).
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The finite difference method is a popular and powerful computational method for numerical seismic wave propagation
modeling (cf. [3,5,7,8]). It is both easy to implement and computationally efficient. Furthermore,we can improve the accuracy
of the solution of the Helmholtz equation by choosing optimal parameters in finite difference formulas [3,5,11]. In recent
years, various second-order schemes have been developed for solving the Helmholtz equation [3,5,12]. A rotated 9-point
finite difference scheme was introduced for the Helmholtz equation in [3], which is an optimal compact scheme of second-
order indeed. In this paper, 9 points were used to approximate the term of zero order in the Helmholtz equation, which is
helpful for suppressing the numerical dispersion and improving the accuracy. Recently, the paper [12] presented a dispersion
minimizing scheme for the Helmholtz equation based on point-weighting. The methods proposed in [3,5,12] belong to the
group of continuous grid finite difference algorithms for wavemodeling. For discontinuous grid finite difference algorithms,
we refer the interested readers to [11], which presented subgridding finite difference schemes of second-order for the
Helmholtz equation with PML. To improve the numerical accuracy, high-order accurate compact finite difference schemes
were also considered. The stencil of a compact scheme only has 3 × 3 points in two dimensions, which is propitious to
inverting the resulting matrix and dealing with the boundaries. In [8,13,14], various compact fourth-order methods for the
Helmholtz equation were presented. Compact sixth-order finite difference schemes for the 3D Helmholtz equation with
constant coefficients were discussed in [15]. For the 2D and 3D Helmholtz equation with variable coefficients, we refer the
interested readers to [6,7] to get high-order compact schemes. High-order schemesmay enjoy faster convergence rate, when
compared to second-order schemes. However, the numerical dispersion still exists for high-order schemes [2]. In this paper,
we will further improve the accuracy of the compact sixth-order scheme by minimizing its numerical dispersion.

Our aim is to develop an optimal compact scheme for the 2D Helmholtz equation, which is sixth-order in accuracy. For
this purpose, both the convergence order and numerical dispersion of the schemewill be considered. Applying the approach
of equation based differencing used in [6,7,14,15], we shall first construct a sixth-order approximation for the Laplacian term.
The existing compact sixth-order finite difference schemes usually use one point to approximate the term of zero order in
the Helmholtz equation [6,15]. To further suppress the numerical dispersion, we will use 9 points to formulate a sixth-order
approximation for the term of zero order. Combining the sixth-order approximation for the Laplacian termwith that for the
term of zero order leads to a compact finite difference scheme for the Helmholtz equation. The resulting scheme has weight
parameters, which can be chosen properly to improve the accuracy of the solution of the Helmholtz equation. Moreover,
we will give a convergence analysis of the scheme and show that it enjoys the accuracy of sixth-order. To choose optimal
coefficients for finite difference schemes, we will propose an approach only depending on the dispersion equation of the
resulting scheme. This method has the advantage of easy implementation.

This paper is organized as follows. In Section 2, we propose a compact finite difference scheme for the 2D Helmholtz
equation with constant wavenumbers, and then provide a convergence analysis to show that the scheme is sixth-order in
accuracy. To choose optimal weight parameters of the scheme, a refined choice strategy is also proposed. In Section 3, a
compact finite difference scheme of sixth-order is presented for the 2D Helmholtz equation with variable wavenumbers.
Numerical experiments are given to demonstrate the efficiency and accuracy of the scheme in Section 4. We show that the
proposed scheme not only improves the accuracy but also reduces the numerical dispersion significantly. Finally, Section 5
contains the conclusions of this paper.

2. An optimal compact sixth-order finite difference scheme for the Helmholtz equation with constant wavenumbers

In this section, we propose a compact finite difference scheme for the 2D Helmholtz equation with constant wavenum-
bers. A convergence analysis is then provided to show that the scheme is sixth-order in accuracy. We also present a new
refined optimization rule for choosing the scheme’s weight parameters based on minimizing the numerical dispersion.

2.1. A compact sixth-order finite difference scheme

Wenext present a compact finite differencemethod for theHelmholtz equation, and thenprove that the proposed scheme
is sixth-order in accuracy.

We turn to constructing a compact sixth-order finite difference scheme for the Helmholtz equation. To describe the finite
difference scheme, we consider the network of grid points (xm, yn), where xm := x0 + (m − 1)h and yn := y0 + (n − 1)h.
Note that the same step size h := ∆x = ∆y is used for both variables x and y. For each m and n, we set um,n := u|x=xm,y=yn
and km,n := k|x=xm,y=yn . Let Dxu and Dxxu (and similarly in the y direction) denote the second-order centered-difference
approximations for ux and uxx, respectively. We also define:

DxDyum,n :=
1

4h2

(
um+1,n+1 + um−1,n−1 − um−1,n+1 − um+1,n−1

)
,

DyDxxum,n :=
1

2h3

[
um+1,n+1 + um−1,n+1 − um+1,n−1 − um−1,n−1 + 2

(
um,n−1 − um,n+1

)]
,

DxxDyyum,n :=
1
h4

{
um+1,n+1 + um−1,n−1 + um−1,n+1 + um+1,n−1 + 4um,n

− 2
(
um,n+1 + um,n−1 + um+1,n + um−1,n

)}
,
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