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a b s t r a c t

The element-free Galerkin (EFG) method is developed in this paper for solving the non-
linear p-Laplacian equation. The moving least squares approximation is used to gener-
ate meshless shape functions, the penalty approach is adopted to enforce the Dirichlet
boundary condition, the Galerkin weak form is employed to obtain the system of discrete
equations, and two iterative procedures are developed to deal with the strong nonlinearity.
Then, the computational formulas of the EFG method for the p-Laplacian equation are
established. Numerical results are finally given to verify the convergence and high com-
putational precision of the method.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we are concerned with the element-free Galerkin (EFG) method [1] for the numerical solution of the
following nonlinear p-Laplacian equation [2–10]

− div
(
|∇u (x)|p−2

∇u (x)
)

= f (x) , x = (x1, x2)T ∈ Ω, (1)

with the Dirichlet boundary condition

u (x) = ū (x) , x ∈ ΓD, (2)

and the Neumann boundary condition

∂u (x)
∂n

= q̄ (x) , x ∈ ΓN , (3)

where p ∈ (1, ∞) is a given parameter, div is the divergence operator, ∇ is the gradient operator, Ω is a two-dimensional
bounded domain with boundary Γ = ΓD ∪ ΓN , n = (n1, n2)

T is the unit outward normal to Γ , u is the unknown function, f ,
ū and q̄ are given functions, and

|∇u (x)| =

√
∇u (x) · ∇u (x) =

√(
∂u
∂x1

)2

+

(
∂u
∂x2

)2

.
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When p = 2, Eq. (1) degenerates to the linear Poisson equation. In this case, Eqs. (1)-(3) can be solved by the EFG method
easily [11–13]. In this paper, we assume that p ̸= 2.

The p-Laplacian equation is also known as p-harmonic equation, and is viewed as one of the typical examples of many
degenerate nonlinear equations. This equation comes up in the modeling of many nonlinear physical processes such as
nonlinear diffusion and filtration [14], power-law materials [15], nonlinear elasticity [16], non-Newtonian flows [17],
turbulent flows [18], elastic–plastic torsional creep [19], flows in porousmedia [20], and image segmentation [21]. Because a
very strong nonlinear term is included, it is very difficult to obtain the analytical solutions. Thus, it is important and useful to
study the numerical solutions of the p-Laplacian equation. On the other hand, owing to the strong nonlinear characteristic,
the numerical approximation of the nonlinear p-Laplacian equation is obviouslymore arduous than that of the linear Poisson
equation.

In the past three decades, considerable attention has been paid to the numerical solutions of the p-Laplacian equation
with the finite element method (FEM) [2–7]. In fact, it is believed [4,5] that the p-Laplacian equation contains most of the
essential difficulties in studies of the FEM for this class of degenerate nonlinear equations. Besides, the finite difference
method (FDM) [8], the finite volume method (FVM) [9] and the discontinuous Galerkin (DG) method [10] have also been
used for the numerical solutions of the p-Laplacian equation. However, the performance of the mesh-based methods relies
severely on the quality of meshes, which may be time consuming and arduous.

Meshless (ormeshfree)methods can get rid of themeshing-related drawbacks by using a set of scattered nodes. Recently,
some meshless methods, such as the meshless local Petrov–Galerkin method [22], the finite point method [23], the radial
basis functions (RBF) method [24] and theWEB-Spline-basedmesh-free finite element method (MFEM) [25] have been used
for solving the p-Laplacian equation.ManyRBFmeshless collocationmethods have been proposed to solve partial differential
equations [26–28]. The EFG method is a typical meshless method within the framework of Galerkin weak form [1]. In this
method, the problemdomain is only discretized by scattered nodes to construct approximate solutionswith themoving least
squares (MLS) approximation [11]. The EFGmethod has been successfully implemented for various science and engineering
problems and thus becomes one of the most important meshless methods [29,30]. However, the application of the EFG
method to the p-Laplacian equation has not been found until now.

In this paper, we extend the frontiers of the EFG method into solving the p-Laplacian equation. In the FEM [2–7], the
FDM [8], the FVM [9], the DG method [10], the RBF [24] and the MFEM [25], the p-Laplacian equation is reformulated as
equivalent minimization problems and then solved with appropriate nonlinear minimization algorithms. Different from
these techniques, here the p-Laplacian equation is discretized directly into nonlinear algebraic system by the EFG method.
Since the MLS shape function lacks the delta function property, the penalty approach is adopted to enforce the Dirichlet
boundary condition. Besides, to deal with the nonlinearity, two iterative procedures are developed. Numerical results
indicate that the present EFG method has much less computational error than the FEM and the FVM. Besides, to further
illustrate the capability of the current EFG method, numerical results involving a torsional creep problem are given.

The rest of this paper is organized as follows. In Section 2, detailed EFG formulations are deduced for the p-Laplacian
equation. Then, numerical examples are presented in Section 3. Finally, some conclusions are contained in Section 4.

2. EFG computational formulas

2.1. Variational formula

In the EFGmethod, the MLS approximation is used to generate the meshless approximate space. However, the lack of the
Kronecker delta function property of theMLS shape functions complicates the enforcement of Dirichlet boundary conditions.
Some approaches have been developed to tackle this issue [29,30]. Here, we use the penalty approach. Then, the boundary
value problem given by Eqs. (1)-(3) can be approximated as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

− div
(
|∇uα (x)|p−2

∇uα (x)
)

= f (x) , x ∈ Ω,

∂uα (x)
∂n

+ αuα (x) = αū (x) , x ∈ ΓD,

∂uα (x)
∂n

= q̄ (x) , x ∈ ΓN ,

(4)

whereα is a penalty factor. In the case of vanishing Dirichlet condition, i.e.,ΓD = ∅, we have uα ≡ u. Otherwise, the EFG error
can be comparable in magnitude to the error due to the enforcement of Dirichlet boundary condition, and a too small or too
big penalty factor increases the error. In Refs. [11,12,31,32], satisfactory results have been obtained by choosing α = 100h−2,
where h denotes the nodal spacing.

According to the first equation in problem (4), we have [2,3]

−

∫
Ω

div
(
|∇uα|

p−2
∇uα

)
vdΩ =

∫
Ω

f vdΩ, ∀ v ∈ W 1,p (Ω) ,

whereW 1,p (Ω) is the usual Sobolev space defined on Ω [33]. Then, applying Gauss formula leads to∫
Ω

|∇uα|
p−2

∇uα · ∇vdΩ −

∫
Γ

|∇uα|
p−2 ∂uα

∂n
vdΓ =

∫
Ω

f vdΩ. (5)
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