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a b s t r a c t

A new functional is presented for variational mesh generation and adaptation. It is for-
mulated based on combining the equidistribution and alignment conditions into a single
condition with only one dimensionless parameter. The functional is shown to be coercive
but not convex. A solution procedure using a discrete moving mesh partial differential
equation is employed. It is shown that the element volumes and altitudes of a mesh
trajectory of the mesh equation associated with the new functional are bounded away
from zero and themesh trajectory stays nonsingular if it is so initially. Numerical examples
demonstrate that the new functional performs comparably as an existing one that is also
based on the equidistribution and alignment conditions and known to work well but
contains an additional parameter.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Variational mesh generation and adaptation has proven a useful tool in the numerical solution of partial differential
equations (PDEs); e.g., see [1–5] and references therein. In this, a (adaptive) mesh is generated as the image of a reference
mesh under a coordinate transformation which is determined as the minimizer of a meshing functional. One of the main
advantages of this approach of mesh generation is that different mesh requirements such as smoothness, orthogonality,
adaptivity, alignment, etc. can easily be incorporated into the formulation of the meshing functional [6]. In addition to being
a method for mesh generation and adaptation, this approach can also be used as a smoothing device for automatic mesh
generation [7,8] and a base for adaptive moving mesh methods [2,9–11].

There exists a vast literature on variational mesh generation and adaptation. A number of meshing functionals have been
developed from different problems and formulated based on different focused requirements. For example, Winslow [12]
develops an equipotential method that is based on variable diffusion. Brackbill and Saltzmann [6] combine mesh concentra-
tion, smoothness, and orthogonality to create a functional. Dvinsky [13] develops amethod based on the energy of harmonic
mappings. Knupp [14] and Knupp and Robidoux [15] focus on the idea of conditioning the Jacobian matrix of the coordinate
transformation. Huang [16] and Huang and Russell [2] have proposed two methods based on the so-called equidistribution
and alignment conditions.

Compared to the algorithmic development, very few theoretical results are known [17–19]. For example, Dvinsky’s
meshing functional [13] is guaranteed to have a unique invertible minimizer by the theory of harmonic mappings between
multidimensional domains. Winslow’s functional [12] is known to have a unique minimizer due to its uniformly convexity
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and coercivity. Furthermore, the functional byHuang [16] is coercive and polyconvex and thus hasminimizers [2]. Recently, a
new formulation of the so-calledmovingmesh partial differential equation (MMPDE)method [9,10] was proposed by Huang
and Kamenski [20], where the meshing functional is first discretized and then the mesh equation (which will be referred
to as the discrete MMPDE hereafter) is defined as a gradient system of the discretized functional. This new formulation
provides an explicit, compact, and analytical formula for themesh velocity, whichmakes the implementation of themethod
much easier and more robust (cf. Section 3). More importantly, several important properties of the discrete MMPDE can be
established; see [21] and/or Section 4 for detail. In particular, the mesh trajectory of the discrete MMPDE stays nonsingular
if it is so initially provided that the meshing functional under consideration satisfies a coercivity condition (cf. (16) below).
To our best knowledge, this is the only nonsingularity result at the discrete level available in the context of variational mesh
generation and adaptation and mesh movement.

It is noted that the functional of [16] satisfies the coercivity condition for a large range of its parameters. It works well
with the framework of MMPDEs and has been successively used for various applications [2]. The functional is formulated
based on the equidistribution and alignment conditions—more precisely, based on an averaging of the two conditions with a
dimensionless parameter. Although the performance of the functional does not seem sensitive to the value of the parameter,
its choice is still arbitrary and there is hardly a convincing guideline for choosing it.

The objective of this paper is to present a new functional using the equidistribution and alignment conditions. Like the
existing functional of [16], this new one is also based on a combination of the two conditions into a single one, but this
time, without introducing any new parameter. We will show that the new functional satisfies the coercivity condition
and has similar theoretical properties as the existing functional when employed with the MMPDE. Two-dimensional
numerical results will be presented to verify theoretical findings as well as demonstrate comparable performances of the
two functionals.

It is worth pointing out that variational mesh adaptation is a special type of anisotropic mesh adaptation which has
become an area of intensive research. There is a vast literature in this area; for example, some of the earlier works are
[22–34].

An outline of this paper is as follows. In Section 2, the equidistribution and alignment conditions will be introduced and
the existing and new functionals will be described. The discrete MMPDE will be presented as a solution procedure for the
minimization problem associated with a meshing functional in Section 3. Section 4 is devoted to the study of the theoretical
properties of the new functional, followed by the numerical examples in Section 5. Finally, Section 6 contains conclusions
and further comments.

2. Meshing functionals based on equidistribution and alignment conditions

In this section we are going to describe two meshing functionals that are formulated from the equidistribution and
alignment conditions (cf. (2) and (3) below). These conditions have been developed based on the concept of uniformmeshes
in some metric tensor [2]. They provide total control of the mesh element size, shape, and orientation of mesh elements
through a metric tensor. One of the meshing functionals to be described was first introduced in [16] and involves averaging
functionals associatedwith the two conditions. It has a number of advantages (whichwill be discussed later) and is known to
work well in practice but involves two dimensionless parameters. The second functional is new. It is formulated by directly
combining the equidistribution and alignment conditions into a single condition which in turn has eliminated one of the
two parameters of the existing functional.

2.1. The equidistribution and alignment conditions

Let the physical domain, Ω ⊂ Rd, d ≥ 1, be a bounded (not necessarily convex) polygonal or polyhedral domain and
M = M(x) be a given symmetric, uniformly positive definite metric tensor defined on Ω which satisfies

mI ≤ M(x) ≤ mI, ∀ x ∈ Ω, (1)

where m and m are positive constants and I is the identity matrix. Our goal is to generate a simplicial mesh for Ω which is
uniform with respect to the metricM. Denote this target mesh by Th = {K } and let N and Nv be the number of its elements
and vertices, respectively. Assume that the reference element K̂ has been chosen to be equilateral and unitary (i.e., |K̂ | = 1,
where |K̂ | denotes the volume of K̂ ). For any element K ∈ Th let FK : K̂ → K be the affine mapping between them and F

′

K be
its Jacobian matrix. Denote the vertices of K by xKj , j = 0, . . . , d and the vertices of K̂ by ξj, j = 0, . . . , d. Then

xKj = FK (ξj).

With this in mind, we can define the equidistribution and alignment conditions that completely characterize a non-
uniform mesh. Indeed, any non-uniform mesh can be viewed as a uniform one in some metric tensor. Using this viewpoint
it is shown (e.g., see [2]) that a uniform mesh in the metricM satisfies
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