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a b s t r a c t

We solve the first order 2-D reaction–diffusion equationswhich describe binding-diffusion
kinetics using the photobleaching scanning profile of a confocal laser scanningmicroscope,
approximated by a Gaussian laser profile. We show how to solve the first-order pho-
tobleaching kinetics partial differential equations (PDEs) using a time-stepping method
known as a Krylov subspace spectral (KSS) method. KSS methods are explicit methods
for solving time-dependent variable-coefficient partial differential equations. They ap-
proximate Fourier coefficients of the solution using Gaussian quadrature rules in the
spectral domain. In this paper, we show how a KSS method can be used to obtain not
only an approximate numerical solution, but also an approximate analytical solution when
using initial conditions that come from pre-bleach steady states and also general initial
conditions, to facilitate asymptotic analysis. Analytical and numerical results are presented.
It is observed that although KSS methods are explicit, it is possible to use a time step that
is far greater than what the CFL condition would indicate.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Fluorescence recovery after photobleaching (FRAP) is a method used to obtain information about the dynamic behavior
of the molecules in a cell membrane. A high-intensity laser beam is used to bleach molecules in a region of the cell.
The redistribution of the molecules is monitored in both bleached and unbleached regions over time to investigate the
movements of molecules within membrane domains. The FRAP method was established by Jacobson et al. in 1976 [1]. The
chemical equation of the binding-diffusion process that happens in FRAP is

u + a
kon
−⇀↽−
koff

b, (1)

where u denotes unboundmolecules, a refers to specific binding sites, and b represents bound complexes (ua). The rate of the
forward binding reaction is called kon, where amolecule binds to a binding site to form a bound complex, and koff refers to the
rate of the reverse unbinding reaction where a molecule is released from its binding site. The first-order reaction–diffusion
equations which describe binding-diffusion kinetics are

∂u
∂t

= −kbIrn (x, y)u + D1∆u − konu + koffb
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∂b
∂t

= −kbIrn (x, y)b + D2∆b + konu − koffb (2)

∆ =
∂2

∂x2
+

∂2

∂y2
, D1 > D2

where the initial conditions from the pre-bleach steady state are

u(x, y, 0) =
koff

kon + koff
ci (3)

b(x, y, 0) =
kon

kon + koff
ci. (4)

D1 and D2 are diffusion coefficients of u and b, respectively; kon and koff are the on and off binding-rate constants, kb is a
bleach constant which is the intensity of the bleaching laser, determined from the properties of the fluorophore, and ci is the
initial concentration of the fluorescent molecules inside the bleached zone. Also, D1, D2, kon and koff are positive constants.
The photobleaching scanning profile of the confocal of the Gaussian laser can be approximated by [2–4]

Irn (x, y) =
2I0
πr2n

e
−

2((x−xc )2+(y−yc )2)
r2n

where rn is the nominal radius of the laser beam and (xc, yc) is the center.
First-order photobleaching kinetics which are mathematically modeled in Eq. (2) were solved numerically by Kang

et al. [4,5]. These equations were also solved numerically using an inversion method (methods of lines, with backward Euler
in time and central differencing in space) in [6]. In this paper we apply an explicit time-stepping method known as a Krylov
subspace spectral (KSS) method to solve the first-order photobleaching kinetics PDEs. KSS methods developed by Lambers
[7] use Gaussian quadrature rules in the spectral domain, as described in [8], to approximate each Fourier coefficient of the
solution. This component-wise approach yields high-order accuracy in time, stability characteristic of implicit methods even
thoughKSSmethods are themselves explicit [7,9], and superior scalability compared to other time-stepping approaches [10].
We will use a KSS method to solve the first-order photobleaching kinetics equations with initial conditions (3), (4). By
applying KSS symbolically to compute each Fourier coefficient, we can also obtain an approximate analytical solution valid
for a sufficiently small time step, to facilitate qualitative analysis of the solution.

The outline of the paper is as follows. In Section 2, we describe KSS methods. In Section 3 we use a first-order KSS
method to derive formulas for the Fourier coefficients of an approximate solution with general initial data. In Section 4
we derive formulas for the Fourier coefficients of an approximate analytical solution, for sufficiently small time, with initial
data obtained from pre-bleach steady states. In Section 5 we explain how this KSS method can be implemented efficiently.
Section 6 presents numerical results to validate our approximate analytical solution and demonstrate the accuracy and
efficiency of the corresponding numerical method, and Section 7 gives concluding remarks and discussion of future work,
including generalizations.

2. Methodology

2.1. Krylov subspace spectral methods

In order to solve Eq. (2), we apply a Krylov subspace spectral (KSS) method [7] in [0, 2π ]
2 and t > 0 with periodic

boundary conditions. To describe KSS methods, we scale down to a simpler problem, a single 1-D PDE on [0, 2π ] rather than
a system of two 2-D PDEs:

∂u
∂t

+ L(x,D)u = 0, u(x, 0) = u0(x)

u(0, t) = u(2π, t)

where D = ∂/∂x and L(x,D) is a differential operator which includes both differentiation operators and coefficients that are
functions of x. The inner product ⟨·, ·⟩ is the standard L2 inner product of functions on [0, 2π ]. The Fourier coefficients of the
exact solution as inner products are calculated as follows:

⟨f , g⟩ =

∫ 2π

0
f (x)g(x) dx

û(ω, tn+1) =

⟨
1

√
2π

eiωx, S(x,D; ∆t)u(x, tn)
⟩
, |ω| ≤ N/2 (5)

where S(x,D; ∆t) = e−L(x,D)∆t is the exact solution operator and N is the number of equally-spaced grid points. After spatial
discretization, (5) becomes

[ûn+1
]ω = êHωSN (∆t)u(tn), SN = e−LN∆t (6)
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