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a b s t r a c t

Generalized Schrödinger equation for Cox spin zero particle is studied in presence of
magnetic field on the background of Lobachevsky space. Separation of the variables is
performed. An equation describing motion along the axis z turns out to be much more
complicated than when describing the Cox particle in Minkowski space.

The form of the effective potential curve indicates that we have a quantum-mechanical
problem of the tunneling type. The derived equation has 6 regular singular points. To
physical domains z = ±∞ there correspond the singular points 0 and 1 of the derived
equation. Frobenius solutions of the equation are constructed, convergence of the relevant
series is examined by Poincaré–Perron method. These series are convergent in the whole
physical domain z ∈ (−∞, +∞). Visualization of constructed solutions and numerical
study of the tunneling effect are performed.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In the frames of the theory of generalized relativistic wave equations, a special model for a spinless particle was proposed
by Cox [1]; some details and extensions can be seen in the Supplement. Updated treatment of this theory can be seen in
recent book [2]. Such wave equations being constructed on the base of extended sets of representations of the Lorentz
group, in presence of external electromagnetic fields describe after excluding additional components particleswhich interact
nonminimally and in various ways with electromagnetic field through electromagnetic tensor. Such additional interaction
terms are associatedwith intrinsic electromagnetic structure of the particles. In particular, the Cox electromagnetic structure
in presence of external electric fieldmay be associatedwith the knownDarvin interaction term in nonrelativistic Schrödinger
equation, this additional interaction is related to non-point-like distribution of the electric charge in the finite volume inside
the particle (see, for instance, in the book [3]). In recent papers [4,5], it was studied behavior of such a particle in external
magnetic and electric fields, and in spaces with non-Euclidean geometry. In particular, a generalized Schrödinger wave
equation for Cox particle was derived [4].

In the present paper we examine the Cox particle in external magnetic field on the background of 3-dimensional
Lobachevsky space. Influence of the curved space model becomes very significant at large distance. The problem reduces
to a rather complex system of differential equations in two variables. The main attention is given to studying the equation
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describing the motion of the particle along the axis z, here we are to examine the quantum tunneling effect through an
effective potential barrier.

In the special system of cylindric coordinates in the Lobachevsky space, analogue of the uniform magnetic field is
determined by the relations [6] (we use dimensionless coordinates, r/ρ H⇒ z and so on, ρ stands for the curvature radius):

dS2 = c2dt2 − cosh2z(dr2 + sinh2rdφ2) − dz2,
√

−g = ρ3 sinh r cosh2z, Aφ = −Bρ2(cosh r − 1),

so that

B3 = Frφ = −Bρ sinh r, B3
= −

B
ρ sinh rcosh4z

, BiBi
= B2cosh−4z. (1)

We start with the known form of the generalized Schrödinger equation [4] for a Cox scalar particle
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Non-zero parameter Γ corresponds to additional structure of the Cox particle; see details in the Supplement. Below for
shortness wewill use notations: Bρ2/h̄c = b, Γ Bcosh−2z = γ (z); the sign at B (and b) relates to orientation of themagnetic
field. With the use of the relations
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and of the substitution for wave function

Ψ = e−iEt/h̄eimφZ(z)R(r), ϵ =
E

h̄2/2Mρ2
; (2)

we derive the following equation in two variables (by physical reason – see Supplement, Eq. (57) – we make the change
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