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a b s t r a c t

SABR models have been used to incorporate stochastic volatility to LIBOR market models
(LMM) in order to describe interest rate dynamics and price interest rate derivatives. From
the numerical point of view, the pricing of derivatives with SABR/LIBOR market models
(SABR/LMMs) is mainly carried out with Monte Carlo simulation. However, this approach
could involve excessively long computational times. For first time in the literature, in the
present paper we propose an alternative pricing based on partial differential equations
(PDEs). Thus, we pose original PDE formulations associated to the SABR/LMMs proposed
by Hagan and Lesniewsk (2008), Mercurio and Morini (2009) and Rebonato and White
(2008). Moreover, as the PDEs associated to these SABR/LMMs are high dimensional in
space, traditional full grid methods (like standard finite differences or finite elements) are
not able to price derivatives overmore than three or four underlying interest rates. In order
to overcome this curse of dimensionality, a sparse grid combination technique is proposed.
A comparison between Monte Carlo simulation results and the ones obtained with the
sparse grid technique illustrates the performance of the method.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The LMM [1–3] has become the most popular interest rate model. The main reason is the agreement between this model
and Black’s formulas [4]. The standard LIBOR market model considers constant volatilities for the forward rates. However,
this is a very limited hypothesis since it is impossible to reproduce market volatility smiles.

Among the different stochastic volatility models offered in the literature, the SABR model proposed by Hagan, Kumar,
Lesniewski and Woodward [5] in the year 2002 stands out for becoming the market standard to reproduce the price of
European options. SABR is the acronym for Stochastic, Alpha, Beta and Rho, three of the four model parameters. The SABR
model cannot be used to price derivatives whose payoff depends on several forward rates. In fact, SABR model works in the
terminal measure, under which both the forward rate and its volatility are martingales. This can always be done if we work
with one forward rate in isolation at a time. Under this same measure, however, the process for another forward rate and
for its volatility would not be driftless.

In order to allow LMM to fit market volatility smiles, different extensions of the LMM that incorporate the volatility smile
by means of the SABR model were proposed. These models are known as SABR/LIBOR market models (SABR/LMMs). In this
article we will deal with the models proposed by Hagan [6], Mercurio and Morini [7] and Rebonato [8].
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While Monte Carlo [9] simulation remains the common choice for pricing interest rate derivatives within SABR/LMM
setting, several difficulties motivate to address alternative approaches based on PDE formulations. The first issue is that the
convergence of Monte Carlo methods, although it depends only very weakly on the dimension of the problem, is very slow.
Indeed, if the standard deviation of the result using a single simulation is ϵ then the standard deviation of the error after N
simulations is ϵ/

√
N . Therefore, to improve the accuracy of the solution by a factor of 10, 100 times asmany simulationsmust

be performed. The second drawback ofMonte Carlomethods is the valuation of optionswith early-exercise, like in the case of
the American options, due to the so-called ‘‘Monte Carlo onMonte Carlo’’ effect. AvailableMonte Carlomethods for American
options are also quite costly, see [10] for example. In contrast, the modification of the PDE to a linear complementarity
problem is usually straightforward. Finally, the weakest point of Monte Carlo methods appears to be the computation of
the sensitivities of the solution with respect to the underlyings, the so-called ‘‘Greeks’’, which are very used by traders, and
are directly given by the partial derivatives of the PDE solution. Besides, path-dependent options, like barrier options, can
be easily priced in the PDE context where only the boundary conditions need to be changed, in contrast to Monte Carlo
methods, where Brownian bridge techniques [11] must be applied.

In view of previous arguments, in the present paper we pose equivalent PDE formulations for the three above mentioned
SABR/LMMs. As far aswenow, this is the first time in the literature that these PDE formulations are posed. From thenumerical
point of view, one main difficulty in these PDE formulations lies in their high dimensionality in space-like variables. In order
to cope with this so-called curse of dimensionality several methods are available in the literature, see [12,13] for example,
which can be put into three categories. The first group uses the Karhunen–Loeve transformation to reduce the stochastic
differential equation to a lower dimensional equation, therefore this results in a lower dimensional PDE associated to the
previously reduced SDE. The second category gathers those methods which try to reduce the dimension of the PDE itself,
like for example dimension-wise decomposition algorithms. Finally, the third category groups the methods which reduce
the complexity of the problem in the discretization layer, like for example the method of sparse grids, which we use in the
present article.

The sparse gridmethodwas originally developedby Smolyak [14],whoused it for numerical integration. It ismainly based
on a hierarchical basis [15,16], a representation of a discrete function space which is equivalent to the conventional nodal
basis, and a sparse tensor product construction. Zenger [17] and Bungartz and Griebel [18] extended this idea and applied
sparse grids to solve PDEs with finite elements, finite volumes and finite differences methods. Besides working directly in
the hierarchical basis, the sparse grid can also be computed using the combination technique [19] by linearly combining
solutions on traditional Cartesian grids with different mesh widths. This is the approach we follow in this article. Recently,
this technique has been used for a financial application related to the pricing of basket options in [20–22].

The paper is organized as follows. In Section 2 some basic concepts related to interest rate derivatives and the
corresponding terminology and notation are introduced. In Section 3 we pose the PDE formulations for the SABR/LMMs.
In Section 4 we describe the use of a full grid finite differences scheme for the Mercurio and Morini model, the application
of which is analogous for the other two SABR/LMMs. Numerical results show the limitations of the full grid method when
the number of forward rates increases. Therefore, in Section 5 we describe the sparse grid combination technique applied
to the SABR/LMM and show numerical results that illustrate the behavior of the method when the number of forward rates
increases. For this purpose, a comparison with Monte Carlo simulation results is used when analytic expressions of the
solution are not available, as it happens in most of the cases. Note that Monte Carlo techniques are the usual alternative to
price with SABR/LMM.

2. Interest rate derivatives. Caplets and swaptions

This section provides a brief introduction to the interest rate derivatives we deal with in the present article, for a deeper
study we refer the reader to [4]. Interest rate derivatives consist of financial contracts that depend on some interest rates.

A zero coupon bondwith maturity at time T is a contract that pays its holder one unit of currency at time T . The value of
this product at time t < T is denoted by P(t, T ), and is called the discount factor from time T to time t . Note that P(T , T ) = 1
for all T .

A tenor structure is a set of ordered payment dates {Ti, i = 0, . . . ,N}, such that

T0 < T1 < · · · < TN−1 < TN .

The time between the payment dates is denoted by τi = Ti+1 − Ti. In terms of the corresponding discount factor, a payment
of x units at time Ti is worth xP(t, Ti) at time t < Ti.

A forward interest rate Fi(t) is an interest rate we can contract in order to borrow or lend money during the future time
period [Ti, Ti+1], and can be expressed in terms of discount factors in the form:

Fi(t) = F (t; Ti, Ti+1) =
1
τi

(
P(t, Ti)

P(t, Ti+1)
− 1

)
where t ≤ Ti.

Conversely, the price of a bond at time Ti that matures at Tj, P(Ti, Tj), can be expressed in terms of forward LIBOR rates as
follows:

P(Ti, Tj) =

j−1∏
k=i

1
1 + τkFk(Ti)

.
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