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a b s t r a c t

Based on lowest-order finite elements in space, we consider the numerical integration
of the Landau–Lifschitz–Gilbert equation (LLG). The dynamics of LLG is driven by the so-
called effective field which usually consists of the exchange field, the external field, and
lower-order contributions such as the stray field. The latter requires the solution of an
additional partial differential equation in full space. Following Bartels and Prohl (2006), we
employ the implicit midpoint rule to treat the exchange field. However, in order to treat
the lower-order terms effectively, we combine the midpoint rule with an explicit Adams–
Bashforth scheme. The resulting integrator is formally of second-order in time, and we
prove unconditional convergence towards a weak solution of LLG. Numerical experiments
underpin the theoretical findings.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Time-dependent micromagnetic phenomena are usually modeled by the Landau–Lifschitz–Gilbert equation (LLG);
see (1). This nonlinear partial differential equation (PDE) describes the behavior of themagnetization of some ferromagnetic
body under the influence of the so-called effective field heff. Global-in-time existence (and possible nonuniqueness) of weak
solutions of LLG goes back to [1,2]. For smooth problems, LLG admits a unique strong solution locally in time, provided the
initial data are smooth (cf. [3]). Under similar restrictions the recent work [4] proves a strong–weak uniqueness principle
for LLG. Unconditionally convergent numerical integrators have first been analyzed mathematically in [5,6], where heff only
consists of the exchange field (see Section 2.1). Here, unconditional convergence means that convergence of the numerical
integrator enforces no CFL-type coupling of the spatial mesh-size h and the time-step size k. Moreover, convergence is
understood in the sense that the sequence of discrete solutions for h, k → 0 admits a subsequence which converges weakly
in H1 towards a weak solution of LLG. The tangent plane integrator of [6] requires to solve one linear system per time-step
(posed in the time-dependent discrete tangent plane), but is formally only first-order in time. Instead, the midpoint scheme
of [5] is formally second-order in time, but involves the solution of one nonlinear system per time-step.

Usually, the effective field heff which drives the dynamics of LLG couples LLG to other stationary or time-dependent
PDEs; see, e.g., [7] for the coupling of LLG with the full Maxwell system, [8] for the electron spin diffusion in ferromagnetic
multilayers, or [9] for LLG with magnetostriction. In the case that the effective field involves stationary PDEs only (e.g., heff
consists of exchange field, anisotropy field, applied exterior field, and self-induced stray field), the numerical analysis of the
tangent plane integrator of [6] has been generalized in [10,11], where the lower-order contributions are treated explicitly
in time by means of a forward Euler step. It is proved that this preserves unconditional convergence. In [12] and [13,14], the
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tangent plane integrator is adapted to the coupling of LLG with the full Maxwell system resp. the eddy current formulation.
Theworks [15,16] extend the tangent plane integrator to LLGwithmagnetostriction resp. LLGwith spin diffusion interaction.
Throughout, [12–16] prove unconditional convergence of the overall integrator. Moreover, one general theme of [12,14–16]
is that the time marching scheme decouples the integration of LLG and the coupled PDE, so that – despite the possibly
nonlinear coupling [15,16] – only two linear systems have to be solved per time-step. Moreover, [16] proves that the nodal
projection step of the original tangent plane integrator [6] can be omitted without losing unconditional convergence. For
this projection-free variant of the tangent plane integrator, the recent work [17] also proves strongH1-convergence towards
strong solutions.

As far as the midpoint scheme from [5] is concerned, the work [18] provides an extended scheme for the Maxwell–LLG
system. Even though the decoupling of the nonlinear LLG equation and the linear Maxwell system appears to be of interest
for a time-marching scheme, the analysis of [18] treats only the full nonlinear system in each time-step.

The present work transfers ideas and results from [10,11] for the tangent plane integrator to the midpoint scheme.
We prove that lower-order terms can be treated explicitly in time. This dramatically lowers the computational work to
solve the nonlinear system in each time-step of the midpoint scheme. Unlike [10,11], however, the effective treatment of
the lower-order terms requires an explicit two-step method (instead of the simple forward Euler method) to preserve the
second-order convergence of themidpoint scheme.We prove that such an approach based on the Adams–Bashforth scheme
guarantees unconditional convergence and remains formally of second-order in time. As an application of the proposed
general framework, we discuss the discretization of the extended form of LLG [19,20] which is used to describe the current
driven motion of domain walls.

2. Model problem and discretization

This section states the Gilbert formulation of LLG and extends the notion of a weak solution from [2] to the present
situation. Then, we introduce the notation for our finite element discretization and formulate the numerical integrator.
Throughout, we employ standard Lebesgue and Sobolev spaces L2(Ω) resp. H1(Ω). For any Banach space B, we let B := B3,
e.g., L2(Ω) := (L2(Ω))3.

2.1. Model problem

For a bounded Lipschitz domain Ω ⊂ R3, initial data m0
∈ H1(Ω), final time T > 0, and the Gilbert damping constant

α > 0, the Gilbert form of LLG reads

∂tm = −m × heff + α m × ∂tm in ΩT := (0, T ) × Ω, (1a)
∂nm = 0 on (0, T ) × ∂Ω, (1b)

m(0) = m0 in Ω. (1c)

With Cex > 0, f : R3
→ R3, and π : H1(Ω) ∩ L∞(Ω) → L2(Ω), the effective field reads

heff := Cex∆m + π(m) + f ; (2)

see Theorem 4 for further assumptions on π(·) and f . With the L2-scalar product ⟨ϕ,ψ⟩ :=
∫

Ω
ϕ ·ψ dx for all ϕ,ψ ∈ L2(Ω),

consider the bulk energy

E(m, f ) :=
Cex

2
∥∇m∥

2
L2(Ω) −

1
2
⟨π(m),m⟩ − ⟨f ,m⟩. (3)

With the convention ⟨m × ∇m, ∇ϕ⟩ :=
∑3

ℓ=1⟨m × ∂xℓm, ∂xℓϕ⟩, we follow [2] for the definition of a weak solution to (1).
Note that the variational formulation (4) is just the weak formulation of (1) after integration by parts.

Definition 1. A functionm is a weak solution to (1) if the following properties (i)–(iv) are satisfied:

(i) m ∈ H1(ΩT ) and |m| = 1 almost everywhere in ΩT ;
(ii) m(0) = m0 in the sense of traces;
(iii) m has bounded energy in the sense that there exists a constant C > 0, which depends only on m0, π(·), and f , such

that, for almost all τ ∈ (0, T ), it holds that

∥∇m(τ )∥2
L2(Ω) +

∫ τ

0
∥∂tm∥

2
L2(Ω)dt ≤ C < ∞;

(iv) for all ϕ ∈ H1(ΩT ), it holds that∫ T

0
⟨∂tm,ϕ⟩dt = Cex

∫ T

0
⟨m × ∇m, ∇ϕ⟩dt −

∫ T

0
⟨m × π(m),ϕ⟩dt

−

∫ T

0
⟨m × f ,ϕ⟩dt + α

∫ T

0
⟨m × ∂tm,ϕ⟩dt.

(4)
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