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a b s t r a c t

In this paper, we study the a posteriori error estimates of two-grid finite volume element
method for second-order nonlinear elliptic equations. We derive the residual-based a
posteriori error estimator and prove the computable upper and lower bounds on the error
in H1-norm. The a posteriori error estimator can be used to assess the accuracy of the
two-grid finite volume element solutions in practical applications. Numerical examples are
provided to illustrate the performance of the proposed estimator.
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1. Introduction

In this paper,wewill study the a posteriori error estimates of the two-grid finite volume elementmethod for the following
two-dimensional nonlinear elliptic boundary value problems{

−∇ · (A(u)∇u) = f (x), in Ω,

u = 0, on ∂Ω,
(1.1)

where x ∈ Ω ⊂ R2 is an open bounded polygonal domain with the boundary ∂Ω and with A : R → R sufficiently smooth
such that there exist constants βi, i = 1, 2, 3, satisfying

0 < β1 ≤ A(x) ≤ β2, |A′(x)| ≤ β3, ∀x ∈ R. (1.2)

Due to the local conservation property and other attractive properties such as robustnesswith unstructuredmeshes, finite
volume element method is widely used in many fields. Especially for many physical and engineering applications, such as
fluid mechanics, heat and mass transfer and petroleum engineering, this numerical conservation property is very crucial.
There are a lot of studies of the mathematical analysis for finite volume element method. We can refer to the monograph [1]
for the general presentation of this method, to literatures [2–9] and the references therein.

Two-grid method was first introduced by Xu [10,11] to solve the nonsymmetric linear and nonlinear elliptic partial
differential equations. The main idea of the two-grid method is to use a coarse grid with grid size H to produce a rough
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approximation of the solution of nonlinear problems firstly. Then we solve a linearized problem with the rough solution as
known values on the fine grid with grid size h < H to get a corrected solution. At almost the same time, Huang and Chen [12]
have proposed a multilevel iterative method that not only reduces the computing work but also preserves all of the high
accuracy properties such as superconvergence, extrapolation, etc. for finite element solutions to singular problems. Later on,
two-gridmethodwas further investigated bymany authors, for instance, Dawson,Wheeler andWoodward [13,14] for finite
difference method and finite element method, Chen and Huang et al. [15–17] for mixed finite element method, Bi, Chen and
Zhang et al. [18–21] for finite volume element method.

Adaptive finite element methods based on a posteriori error estimates have become a central theme in scientific and
engineering computations since the pioneering work of Babuvška and Rheinboldt [22]. There are many works on the a
posteriori error estimates of finite elementmethod [23–26]. The a posteriori error analysis for finite volume elementmethod
is also developed in recent years. Lazarov and Tomov [27] have analyzed the a posteriori error estimates and adaptive
finite volume element method for the convection–diffusion reaction problems. Afif et al. [28] established residual-type a
posteriori error estimates for a linear elliptic boundary value problem. Bergam et al. [29] derived a posteriori error estimates
for vertex-centered finite volumemethod of a class of nonlinear elliptic problems. Carstensen et al. [30] studied residual-type
error estimators for a posteriori finite volume element error control with and without upwind scheme for general elliptic
problems. Bi and Ginting [31] have constructed residual-type a posteriori error estimate of finite volume element method
for a quasi-linear elliptic problem. Ye [32] has established general residual-type a posteriori estimator for the second-order
elliptic problem that can be applied to different finite volume methods.

For the nonlinear elliptic problem (1.1), Chatzipantelidis et al. [5] have proved the existence of the finite volume element
method and derived error estimates in H1, L2 and L∞ norm. Then Bi and Ginting studied the two-grid finite volume element
method for this model and proved the optimal error estimates in theH1 norm. Based on these results, we study the residual-
based a posteriori error estimates of two-grid finite volume elementmethod for the nonlinear elliptic problem.We construct
a computational residual-based a posteriori error estimator of the two-grid finite volume element method and develop the
global upper and local lower bounds on the error in the H1-norm. Our theoretical and experiment findings show that the a
posteriori error estimates are valid and efficient in the two-grid finite volume element method.

The rest of this paper is organized as follows. In Section 2 we describe the two-grid finite volume element scheme for the
nonlinear elliptic problem (1.1) and give some useful lemmas. In Section 3 we propose a residual-based a posteriori error
estimator of the two-grid finite volume element method for (1.1) and derive the global upper and local lower bounds on the
error in H1 norm. In Section 4 we give some numerical examples to validate the theoretical results. Finally we summarize
the main results of this paper and make a conclusion.

Throughout this paper, we will use C or C with its subscript to denote a generic positive constant. The constant will not
depend on the mesh parameters and may represent different values in different places.

2. Two-grid finite volume element method

We shall use the standard notations for Sobolev spacesW s,p(Ω) [33] and their associated inner products (·, ·)s,p,Ω , norms
∥ · ∥s,p,Ω and seminorms |·|s,p,Ω , respectively. In order to simplify the notation, we denote W s,2(Ω) by Hs(Ω) and omit the
index p = 2 and Ω whenever possible; i.e., ∥u∥s,2,Ω = ∥u∥s,2 = ∥u∥s. We denote by H1

0 (Ω) the subspace of H1(Ω) of
functions vanishing on the boundary ∂Ω .

For the nonlinear elliptic problem (1.1), the weak formulation is to find u ∈ H1
0 (Ω) such that

a(u; u, v) = (f , v), ∀v ∈ H1
0 (Ω), (2.1)

where (·, ·) denotes the L2(Ω)-inner product and the bilinear form a(·; ·, ·) is defined by

a(w; u, v) =

∫
Ω

A(w)∇u · ∇vdx, ∀u, v, w ∈ H1
0 (Ω).

The existence and uniqueness of the weak solution of (2.1) has been proved in [34].
Let Th be a quasi-uniform triangulation ofΩ with h = max hK , where hK is the diameter of the triangle K ∈ Th. Based on

this triangulation, let Vh be the standard conforming finite element space of piecewise linear functions,

Vh = {v ∈ C(Ω) : v|K is linear,∀K ∈ Th; v|∂Ω = 0}.

Then the standard finite element method for (2.1) is to find uh ∈ Vh, such that

a(uh; uh, vh) = (f , vh), ∀vh ∈ Vh, (2.2)

where

a(wh; uh, vh) =

∫
Ω

A(wh)∇uh · ∇vhdx, ∀wh, uh, vh ∈ Vh.

The existence and uniqueness of (2.2) was stated in [11].
For the finite volume element method, we introduce the dual partition T ∗

h of the original partition Th which is called
control volumes. Now we present the construction of T ∗

h . For a triangulation K ∈ Th, we choose the barycenter zK of K and
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