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a b s t r a c t

We study the approximation of determinant for large scale matrices with low compu-
tational complexity. This paper develops a generalized stochastic polynomial approx-
imation frame as well as a stochastic Legendre approximation algorithm to calculate
log-determinants of large-scale positive definite matrices based on the prior eigenvalue
distributions. The generalized frame is implemented byweighted L2 orthogonal polynomial
expansions with an efficient recursion formula and matrix–vector multiplications. So the
proposed scheme is efficient both in computational complexity and data storage. Respec-
tive error bounds are given in theory which guarantee the convergence of the proposed
algorithms. We illustrate the effectiveness of our method by numerical experiments on
both synthetic matrices and counting spanning trees.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of large-scale log-determinant computation is widely studied, which arises frommachine learning and data
mining applications such as Gaussian process [1,2], sparse inverse covariance estimation [3,4] and counting spanning trees
in large-scale networks [5,6]. In this paper, we consider the stochastic estimation of log-determinant of a positive symmetric
matrix Σ ∈ Rn×n.

A typical method to solve the problem is Cholesky decomposition. But it is not always affordable for large scale
log-determinant computation. First, for Σ is often sparse, which could be stored efficiently, the operation of Cholesky
decomposition tends to fill in the zero entries, devastating the sparsity and costing storage even with reordering techniques
such like AMD [7]. Second, Cholesky decomposition costs O(n3) flops in dense cases, which is expensive when n is quite
large.

Previous studies have developed several randomized methods to approximate log-determinant of a symmetric positive
matrix. In general, existing stochastic methods for the problem are based on the trace estimation via Monte-Carlo
methods [8]. Barry et al. [9] and Boutsidis et al. [10] use randomized Taylor expansions in a variety of settings. However, from
the viewpoint of polynomial approximation, the Taylor series is hardly to be the optimal. Later, the stochastic Chebyshev
expansion method [11] is also presented, which accelerates the Taylor approximation significantly. However, this method
requires the minimal and maximal eigenvalue of a matrix to dilate the objective function in proofs and algorithms, which
costs extra computation. In recent, the log-determinant algorithm is extended to a general case of estimating the trace of
f (A) via the similar frame [12].

Besides polynomial approximations, the subspace iteration based estimator for Trace(A) or log det(I + A) is introduced
by Saibaba et al. [13], where the Hermitian positive definite matrix A has k dominant eigenvalues. The essence of the
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subspace method is to maintain the larger eigenvalues while drop the smaller ones to reduce the scale of the objective
matrix. Essentially, this method consider the prior that the matrix A has k dominant eigenvalues.

As a popular viewpoint in probabilistic numerics is to regard epistemic uncertainty in numerical objects as random
variables, a prior knowledge about the uncertainty might enhance existing deterministic methods. In this paper, we extend
previous research to a general case based on the eigenvalue distribution prior. First, a generalized polynomial approximating
frame for log-determinant computation is proposed in the weighted L2 space. A stochastic orthogonal polynomial expansion
approximating method is given as well as a deterministic error bound, only an upper bound of eigenvalues is required
which could be obtained by the Gershgorin circle theorem or the power method. The proofs of the deterministic part are
standard adaptations of known techniques in Aune et al. [14], Boutsidis et al. [10] and Han et al. [11]. We also notice that a
practical error bound could hardly be given without the prior distribution of eigenvalues due to the singularity of log x at 0.
Thus a probabilistic error bound is presented through eigenvalues regarded as random variables. Through theoretical and
numerical results, we note the similarity between the weight function and the eigenvalue distribution might be related to
the convergence rate. Therefore, orthogonal polynomials with certain weight functions could be selected to accelerate the
convergence based on the prior eigenvalue distribution. Numerical experiments involving graph theory are also conducted
to demonstrate the strategy.

During the review period of the manuscript, we noticed the very recent SLQ method proposed by Ubaru et al. [15]. The
SLQ algorithm is primarily based on the theory of Lanczos Quadrature [16], which is applied to estimate vT f (A)v through
Gaussian quadraturewith an implicitweight function to approximate the eigenvalue distribution instead of a given prior. The
numerical comparisonwith SLQ is given in the experiment part. Another appealing recentwork is using Bayesian quadrature
proposed by Fitzsimons et al. [17], which updates the eigenvalue distribution via posterior estimation.

The paper is organized as follows. Weighted L2 space and orthogonal polynomial approximation are introduced in
Section 2 as preliminaries. Section 3 proposes a general algorithm including the Legendre approximation as a special case.
Deterministic and probabilistic bounds are derived in Section 4. In Section 5, we conduct several numerical experiments and
Section 6 concludes the paper.

2. L2(ω) and orthogonal polynomial approximation

In this section, the weighted L2 space L2(ω) is introduced. The best orthogonal polynomial approximation respect to the
weight function ω(x) is then given as preparation for our general frame.

Let the weight function ω : (−1, 1)→ R be continuous and positive almost everywhere, satisfying
∫ 1
−1 ω(x)dx = 1 and

0 <
∫ 1
−1 x

2nω(x)dx < +∞, n ≥ 0. The weighted L2 space with a weight function ω(x) is defined as

L2(ω) =
{
f |⟨f , f ⟩ω =

∫ 1

−1
|f (x)|2ω(x)dx < +∞

}
,

where the inner product ⟨f , g⟩ω =
∫ 1
−1 f (x)g(x)ω(x)dxwhich induces a norm ∥f ∥ω =

(∫ 1
−1 f (x)

2ω(x)dx
) 1

2
.

A family of orthogonal polynomials {Qi(x)|i = 0, 1, 2, . . . ,N} respect to ω(x) could be obtained by

Qi+1(x) =
x− ⟨xQi,Qi⟩ω

ki
Qi(x)−

⟨xQi,Qi−1⟩ω

ki
Qi−1(x), i = 1, 2, . . . (1)

where Q0(x) and Q1(x) are given satisfying⟨Q0,Q1⟩ω = 0 , ki ∈ R is chosen as a positive real number so that ∥Qi+1(x)∥ω = 1.
It follows deg(Qi(x)) = i and ⟨Qi,Qj⟩ω = δij immediately. Denote SN = span{1, x, x2, . . . , xN}, which is the collection of all
polynomials with degrees no more than N . Then we have SN = span{Qi(x)|i = 0, 1, 2, . . . ,N}.

Assume p0,ω(x) = 1 and p1,ω(x) = q1x− q0 satisfying ⟨p0,ω, p1,ω⟩ω = 0 with given ω(x). Then by (1),

pi+1,ω(x) =
x− bi
ai

pi,ω(x)− dipi−1,ω(x), i = 1, 2, . . . ,N.

Particularly, let p1,ω(x) be the second term of Legendre polynomials, Chebyshev polynomials of the first kind (Chebyshev I)
and Chebyshev polynomials of the second kind (Chebyshev II) respectively, and some specified ω(x) is chosen accordingly,
we have

(q1, q0, ai, bi, di) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1, 0,

i+ 1
2i+ 1

, 0,
i

i+ 1
) , ω(x) =

1
2
(Legendre)

(1, 0,
1
2
, 0, 1) , ω(x) =

1
√
1− x2

(Chebyshev I)

(2, 0,
1
2
, 0, 1) , ω(x) =

√
1− x2(Chebyshev II).

(2)
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