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a b s t r a c t

In this paperwepresent a numericalmethod to price options based onRadial Basis Function
generated Finite Differences (RBF-FD) in space and the Backward Differentiation Formula
of order 2 (BDF-2) in time. We use Gaussian RBFs that depend on a shape parameter ε.
The choice of this parameter is crucial for the performance of the method. We chose ε as
const · h−1 and we derive suitable values of the constant for different stencil sizes in 1D
and 2D. This constant is independent of the problem parameters such as the volatilities
of the underlying assets and the interest rate in the market. In the literature on option
pricing with RBF-FD, a constant value of the shape parameter is used. We show that
this always leads to ill-conditioning for decreasing h, whereas our proposed method
avoids such ill-conditioning. We present numerical results for problems in 1D, 2D, and 3D
demonstrating the useful features of our method such as discretization sparsity, flexibility
in node placement, and easy dimensional extendability, which provide high computational
efficiency and accuracy.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Calibration and pricing of financial instruments is something that is going on daily in the financial industry. In most cases
there are no analytical solutions available and therefore numericalmethods have to be used for this purpose. Hence, accurate
and efficient methods for this kind of problems are of utmost importance. In this paper our focus is on developing methods
for pricing of multi-asset options, i.e. when an option is issued on several underlying assets. This leads to a high-dimensional
problem which is numerically very challenging to solve.

We start by considering the Black–Scholes–Merton model with a risk free asset B and a risky asset S that follow the
dynamics

dB(t) = rB(t)dt,
dS(t) = µS(t)dt + σS(t)dW (t), (1)

where t is time, r is the interest rate, µ is the drift and σ is the volatility of S, andW is the Wiener process. A European type
option issued on S, maturing at time T , with a payoff function g(S(T )) can be priced from

u(S(t), t) = e−r(T−t)EQ [g(S(T ))] , (2)
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where EQ
[·] denotes the expected value under the risk-neutral measure Q . In [1] and [2] it was independently shown that

the price of an option can also be obtained by solving
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∂s2
− ru = 0,

u(s, T ) = g(s).
(3)

Eq. (3) is a parabolic partial differential equation (PDE), which can be solved backward in time using e.g. Finite Differences
(FD) in space [3–6].

Next, we turn to multi-asset options that depend on D underlying assets Sd(t), d = 1, . . . ,D. The multi-dimensional
analogue to (1) is

dB(t) = rB(t)dt,
dS1(t) = µ1S1(t)dt + σ1S1(t)dW1(t),
dS2(t) = µ2S2(t)dt + σ2S2(t)dW2(t),

...

dSD(t) = µDSD(t)dt + σDSD(t)dWD(t),

(4)

where the Wiener processes are correlated such that dWi(t)dWj(t) = ρi,jdt . In this high-dimensional setting, an option
issued on the assets (4) with payoff function g(S1(T ), . . . , SD(T )) can be priced from

u(S1(t), . . . , SD(t), t) = e−r(T−t)EQ
t [g(S1(T ), . . . , SD(T ))].

The corresponding high-dimensional Black–Scholes–Merton equation reads
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+ Lu = 0,

u(s1, s2, . . . , sD, T ) = g(s1, s2, . . . , sD).

(5)

Since FD methods are generally discretized on tensor product grids of 1D Cartesian grids, the number of degrees of freedom
grows exponentially in the number of dimensions D—the so-called curse of dimensionality. Traditionally, Monte-Carlo
methods have been the only way to price options in dimensions larger than approximately 5.

Global radial basis functions (RBFs) approximation methods are mesh-free, meaning that they are flexible with respect
to the geometry of the computational domain. Hence, we are no longer restricted to Cartesian grids, and we can more
freely place nodes where they are needed for accuracy reasons. Moreover, the methods are not more complicated for high-
dimensional problems than in lower dimensions, since the only geometrical property that is used is the pairwise distance
between points. Finally, for smooth functions, approximations with smooth RBFs can give spectral convergence. When RBFs
are used, the space is discretized using N nodes s(i) and the solution is approximated by

u(s, t) ≈

N∑
i=1

λi(t)φ(∥s − s(i)∥), k = 1, 2, . . . ,N,

whereφ(r) is a radial basis function. Possible radial basis functions are eg. Gaussian (e−(εr)2 ), inverse quadratic (1/(1+(εr)2)),
multiquadric (

√
1 + (εr)2) and inversemultiquadric (1/

√
1 + (εr)2), where ε is a shape parameter that determines thewidth

of the basis function, see e.g. [7].
To sparsify the linear systems of equations, various techniques to localize the RBFs are possible such as RBF Partition

of Unity Methods (RBF-PUM) [8–11], where the computational domain is partitioned into subdomains. In this paper we
consider an even more localized strategy, RBF generated Finite Difference (RBF-FD) [12–18]. In RBF-FD methods, the finite
difference weights in the computational stencils are computed from RBFs rather than from the monomials {1, x, x2, . . .}
which are used in standard finite differences.

We would like to have a solution method for (5) that yields the same type of sparsity structure as FD but is as easy to
employ in higher dimensions as the RBFmethod. By deriving finite difference approximations based on radial basis function
approximations we expect to achieve these properties. RBF-FD for option pricing has previously been used in e.g. [19–23]
for various types of options. In all these references, 1D and in some cases 2D problems are considered with uniform node
layouts and (very) small stencils, which severely restricts the potential usefulness of the method. Moreover, no analysis or
suggestions on the choice of the shape parameter ε is provided which is important for the method to be used in practice.

In this paper we propose an RBF-FD method for option pricing that can be used with non-uniform node layouts on
suitably shaped domains and in any number of dimensions. We provide numerical examples in up to three dimensions.
Also, we analyze our method with respect to accuracy and choice of shape parameter ε. From this analysis and numerical
experiments, we propose a way of choosing this important parameter.

The article is organized as follows. In Section 2wedescribe the spatial and temporal discretization aswell as the treatment
of the open boundary problem for the American options. The spatial error is analyzed for a 1D problem in Section 3 and
numerical experiments are presented in Section 4. Finally in Section 5 we summarize and draw some conclusions.
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