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a b s t r a c t

This paper discusses electromagnetic numerical mode analysis in waveguides with ma-
terially inhomogeneous cross-sections and material dissipation. A full-wave formulation
of Maxwell’s homogeneous equations including Gauss electric law, stable at vanishing
propagation constant is implemented andverified in termsof thehp-adaptive version of the
finite elementmethod. It provides the possibility to use high order polynomial enrichments
combined with strongly graded meshes. It is considered most efficient in resolving the
loss of solution regularity at material interfaces with large contrast. Numerical examples
including materially lossless homogeneous and inhomogeneous cross sections with and
without losses are analysed to corroborate the implementation. The efficiency of using
higher order polynomial enrichments is shown. The approach is anticipated to have a broad
application, from modern on-chip interconnect and antenna technologies to the design of
low observable aerial vehicles.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis of the propagation of electromagnetic waves in cylinder-like structures whose lengths are much larger
than their diameter (L/D ≫ 1) is of great practical interest in computational electromagnetics for the design of antenna
waveguides, on-chip interconnect structures, optical fibres and low radar signature fighter aircraft jet-engine air intakes,
to mention a few. A waveguide is here a structure with L/D ≫ 1 and with at least one open end. It is understood to be
(piecewise) materially homogeneous in the axial direction. An ideal lossless waveguide may in this context be thought of
as a hollow, air-filled, metallic cylinder where the metallic casing is assumed to be perfectly conducting (PEC). The three
dimensional description of the propagating electric and magnetic waves {E,H}(x, t), x : (x, y, z) ∈ R3 considered in
such a waveguide is commonly described as harmonic with respect to the time-variable t and with respect to the axial
coordinate z, respectively, {E,H}(r)ei(ωt±γ z), r ∈ R2 where ω is the (given) driving circular frequency and γ is the axial
propagation parameter, to be determined together with the two-dimensional vector-valued fields {E,H}(r), see e.g. [1].
Recalling that Maxwell’s equations are linear, this most characteristic waveguide feature suggests factoring out the time-
dependence and determining for example the two-dimensional electric phasor E(r) and common propagation parameter γ
by solving the relevant homogeneous form of the Maxwell equations. A forced waveguide response problem may then be
solved using a standard mode superposition technique. The partial separation of variables ansatz for a waveguide reduces
the spatial dimensionality of the boundary value problem to be solved. Still if the wave-guide cross-section does not have
a canonical shape (e.g. rectangular or circular) and its characteristic cross-section diameter to the driving wavelength ratio
is large D/λ ≫ 1 the computational problem requires a numerical solution and may become challenging, see Zdunek and
Rachowicz [2]. The method preferred here, having lossy materially non-homogeneous cross sections in mind, is the finite
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element method (FEM). Common finite element formulations can be found in many textbooks, see for example Jin [3] and
Volakis et al. [4]. A material interface (discontinuity in the electric permittivity and/or the magnetic permeability) within
the cross-section implies a loss of regularity in the phasors {E,H}(r) across the interface, see Costabel, Dauge and Nicase [5].
The regularity loss suggests the use of the hp-adaptive version of FEM, see Demkowicz [6]. Thematerially non-homogeneous
casemay be solved using a full-wave formulation, i.e. a direct solution of all three components of the chosen electromagnetic
phasor. See for example Vardapetyan and Demkowicz [7] or the alternative by Lee, Cendes and Sun [8]. The former is
preferred here since it is shown to be stable in the event the propagation parameter becomes small γ → 0. In passing it is
recalled that the materially homogeneous lossless case posed on a simply connected cross section requires only the solution
of two, two-dimensional, scalar eigen problems for the cut-off wave lengths k2c corresponding to the transversely electric and
magnetic (TE/TM)-modes respectively. In case the cross-section is multiply connected a third homogeneous problem for the
so-called TEM-modes must be solved. Moreover the computed eigen-pairs are independent of the driving frequency ω. In
the materially non-homogeneous case, the eigen-solution is ω-dependent. Further, Fernandez et al. [9] showed numerically
that the propagation parameter may become complex at certain frequencies ω even in a lossless materially inhomogeneous
waveguide, i.e. γ = α + iβ . In other words the eigenvalues may be complex although the matrices in the pencil are real-
valued. Complex waves always occur in pairs, with the propagation constant of one being the complex conjugate of the
other. Since they appear in pairs that do not carry any net power, no dissipation takes place. It has been observed that
complex waves have to be included in the field expansion used in field matching procedures for the analysis of waveguide
discontinuities and that their omission might lead to serious errors, see Fernandez et al. [9] and references therein.

An hp-adaptive implementation of the Vardapetyan andDemkowicz [7] formulation ismade. It requires the development
of non-standard mixed type edge- and node-based H(curl)- and H1-conforming elements. Material losses are included;
the electric permittivity and/or the magnetic permeability may be complex-valued. An electric field based formulation is
chosen. Given the driving frequency ω we compute the complex-valued propagation parameter γ and the corresponding
two-dimensional tangential and the scalar axial part of the eigen-field e = (et , ez) directly. The resulting algebraic eigen-
problem is of the generalised type, (A− γ 2B)e = 0. It has a complex-valued pencil (A,B) in presence of dissipative material
contributions. Matrix A(ω) is ω-dependent and non-symmetric while matrix B is constant, block-diagonal with a zero
diagonal block. The problem is solvedwith amodularised shift-invert technique. The numerical algorithmdeveloped consists
of a MPI/OpenMP parallelised so-calledmulti-frontal solver for non-symmetric complex-valued unassembledmatrices with
input domain-wise element-by-element for which a domain-decomposition is created providing a good load-balancing.
Further an Arnoldi-based eigen solver for complex-valued problems is employed in a shift-invert mode. The algorithm
is implemented in the hp-adaptive code hp2d provided with the textbook by Demkowicz [6]. The use of high order p-
enrichments is exercised and shown to be very efficient.

The remainder of this article is disposed as follows. The materially inhomogeneous waveguide problem is stated and
formulated in Section 2. The associated algebraic problem is set up and the solution algorithm used is presented in Section
3. The numerical examples used to verify the implementation and to illustrate the applicability are found in Section 4. We
consider a simple rectangular inhomogeneous waveguide benchmark problem in Section 4.1. We provide our numerical
results for the shielded dielectric image line investigated thoroughly by Strube and Arndt [10] in Section 4.2. Finally in
Section 4.3 we illustrate the travelling wave analysis of a circular wave guide with and without a lossy coating. The article is
concluded by a short discussion in Section 5 and a summary and conclusions in Section 6.

2. Problem statement

Given a driving circular frequency, geometry and boundary data for a wave-guide, including material data for a possibly
non-homogeneous cross section, we seek the propagation constants and the associated out-of-plane wave modes. To this
end the following time harmonic condition for the electric field intensity,

Ẽ(x, t) = Re
[
E(x)eiωt] , (1)

is assumed with x ∈ R3, where ω is the circular frequency and i =
√

−1 is the imaginary unit and E(x) is the complex-
valued phasor field. Let H(curl, Ω) be the set of square integrable vector fields on a domain Ω ⊂ R3 whose curl is square
integrable, and let H1(Ω) be the set of square integrable scalar fields on the domain Ω whose first partial derivatives are
square integrable. The full-wave, three-dimensional time harmonicMaxwell eigenvalue-problem can be stated inweak form
as: ⎧⎪⎨⎪⎩

Find E ∈ H(curl, Ω), n × E = 0 on ∂ΩPEC, and γ 2
∈ C :(

µ−1
r ∇ × E, ∇ × F

)
− γ 2 (ϵrE, F ) = 0, ∀F ∈ H(curl, Ω), n × F = 0 on ∂ΩPEC

(ϵrE, ∇ϕ) = 0, ∀ϕ ∈ H1(Ω), ϕ = 0 on ∂ΩPEC,

(2a,b)

where as usually µr is the relative magnetic permeability and ϵr is the relative electric permittivity, and where we use the
standard L2(Ω) inner product notation,

(A,B)Ω =

∫
Ω

A · B̄ dΩ. (3)
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