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a b s t r a c t

We deriveH(curl)-error estimates and improved L2-error estimates for theMaxwell equa-
tions approximated using edge finite elements. These estimates only invoke the expected
regularity pickup of the exact solution in the scale of the Sobolev spaces, which is typically
lower than 1

2 and can be arbitrarily close to 0 when the material properties are hetero-
geneous. The key tools for the analysis are commuting quasi-interpolation operators in
H(curl)- and H(div)-conforming finite element spaces and, most crucially, newly-devised
quasi-interpolation operators delivering optimal estimates on the decay rate of the best-
approximation error for functionswith Sobolev smoothness index arbitrarily close to 0. The
proposed analysis entirely bypasses the technique known in the literature as the discrete
compactness argument.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The objective of this paper is to review some recent results concerning the approximation of theMaxwell equations using
edge finite elements. One important difficulty is themodest regularity pickup of the exact solution in the scale of the Sobolev
spaces which is typically lower than 1

2 and can be arbitrarily close to 0 when the material properties are heterogeneous. We
show that the difficulties induced by the lack of stability of the canonical interpolation operators in H(curl)- and H(div)-
conforming finite element spaces can be overcome by invoking recent results on commuting quasi-interpolation operators
and newly devised quasi-interpolation operators that deliver optimal estimates on the decay rate of the best-approximation
error in those spaces. In addition to a curl-preserving lifting operator introduced by Monk [1, p. 249–250], the commuting
quasi-interpolation operators are central to establish a discrete counterpart of the Poincaré–Steklov inequality (bounding
the L2-norm of a divergence-free field by the L2-norm of its curl), as already shown in the pioneering work of Arnold et al.
[2, §9.1] on Finite Element Exterior Calculus. It is therefore possible to bypass entirely the technique known in the literature
as the discrete compactness argument (Kikuchi [3], Monk and Demkowicz [4], Caorsi et al. [5]). The novelty here is the use
of quasi-interpolation operators devised by the authors in [6] that give optimal decay rates of the approximation error in
fractional Sobolev spaces with a smoothness index that can be arbitrarily small. This allows us to establish optimal H(curl)-
norm and L2-norm error estimates that do not invoke additional regularity assumptions on the exact solution other than
those resulting from the model problem at hand. Optimality is understood here in the sense of the decay rates with respect
to themesh-size; the constants in the error estimates can depend on the heterogeneity ratio of thematerial properties. Note
that all the above quasi-interpolation operators are available with or without prescription of essential boundary conditions.
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The paper is organized as follows. Notation and technical results are given in Section 2. Themain results from this section
are Theorem 2.2, which states the existence of optimal commuting quasi-interpolation operators, and Theorems 2.3 and 2.4,
which give decay estimates of the best approximation in fractional Sobolev norms. Section 3 is concernedwith standard facts
about theMaxwell equations. In particular, we state ourmain assumptions on themodel problem and briefly recall standard
approximation results for theMaxwell equations that solely rely on a coercivity argument. The new results announced above
are collected in Section 4 and in Section 5. After establishing the discrete Poincaré–Steklov inequality in Theorem 4.5, our
main results are Theorem4.8 for theH(curl)-error estimate and Theorem5.3 for the improved L2-error estimate. Both results
do not invoke regularity assumptions on the exact solution other than those resulting from the model problem at hand.

2. Preliminaries

We recall in this section some notions of functional analysis and approximation using finite elements that will be invoked
in the paper. The space dimension is 3 in the entire paper (d = 3) and D is an open, bounded, and connected Lipschitz subset
in R3.

2.1. Functional spaces

We are going tomake use of the standard L2-based Sobolev spacesHm(D),m ∈ N. The vector-valued counterpart ofHm(D)
is denoted Hm(D). We additionally introduce the vector-valued spaces

H(curl;D) := {b ∈ L2(D) | ∇ × b ∈ L2(D)}, (2.1)

H(div;D) := {b ∈ L2(D) | ∇ · b ∈ L2(D)}. (2.2)

To be dimensionally coherent, we equip these Hilbert spaces with the norms

∥b∥H1(D) := (∥b∥2
L2(D) + ℓ2D∥∇b∥2

L2(D))
1
2 , (2.3)

∥b∥H(curl;D) := (∥b∥2
L2(D) + ℓ2D∥∇ × b∥2

L2(D))
1
2 , (2.4)

∥b∥H(div;D) := (∥b∥2
L2(D) + ℓ2D∥∇ · b∥2

L2(D))
1
2 , (2.5)

where ℓD is some characteristic dimension of D, say the diameter of D for instance. In this paper we are also going to use
fractional Sobolev norms with smoothness index s ∈ (0, 1), defined as follows:

∥b∥Hs(D) := (∥b∥2
L2(D) + ℓ2sD |b|2Hs(D))

1
2 , (2.6)

where |·|Hs(D) is the Sobolev–Slobodeckij semi-norm applied componentwise. Similarly, for any s > 0, s ∈ R \ N, and
p ∈ [1,∞), the norm of the Sobolev space W s,p(D) is defined by ∥v∥W s,p(D) := (∥v∥p

Wm,p(D) + ℓ
sp
D
∑

|α|=m|∂αv|
p
Wσ ,p(D))

1
p with

∥v∥Wm,p(D) := (
∑

|α|≤mℓ
|α|p
D ∥∂αv∥

p
Lp(D))

1
p where m := ⌊s⌋ ∈ N, σ := m − s ∈ (0, 1).

2.2. Traces

In order to make sense of the boundary conditions, we introduce trace operators. Let γ g
: H1(D) → H

1
2 (∂D) be the (full)

trace operator. It is known that γ g is surjective. Let ⟨·, ·⟩∂D denote the duality pairing between H−
1
2 (∂D) := (H

1
2 (∂D))′ and

H
1
2 (∂D). We define the tangential trace operator γ c

: H(curl;D) → H−
1
2 (∂D) as follows:

⟨γ c(v), l⟩∂D :=

∫
D
v · ∇ × w(l) dx −

∫
D
(∇ × v) · w(l) dx, (2.7)

for all v ∈ H(curl;D), all l ∈ H
1
2 (∂D) and allw(l) ∈ H1(D) such that γ g(w(l)) = l. One readily verifies that the definition (2.7)

is independent of the choice ofw(l), that γ c(v) = v|∂D × n when v is smooth, and that the map γ c is bounded.
We define similarly the normal trace map γ d

: H(div;D) → H−
1
2 (∂D) by

⟨γ d(v), l⟩∂D :=

∫
D
v · ∇q(l) dx +

∫
D
(∇ · v)q(l) dx, (2.8)

for all v ∈ H(div;D), all l ∈ H
1
2 (∂D), and all q(l) ∈ H1(D) such that γ g(q(l)) = l. Here ⟨·, ·⟩∂D denotes the duality pairing

betweenH−
1
2 (∂D) andH

1
2 (∂D). One can verify that the definition (2.8) is independent of the choice of q(l), that γ d(v) = v|∂D·n

when v is smooth, and that the map γ d is bounded.
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