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a b s t r a c t

In this paper, we investigate a diffusive epidemic model with nonlinear incidence rate un-
der homogeneousNeumann boundary condition. The value of this study lies in two aspects.
Mathematically, we show the stability of the constant positive steady state solution, the
existence and nonexistence, the local and global structure of nonconstant positive steady
states. And epidemiologically, we find that the system exhibits Turing patterns controlled
by diffusion.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Mathematical models have been important tools in analyzing the spread and control of infectious diseases, qualitatively
and quantitatively. The research results are helpful for predicting the developing tendencies of the infectious diseases, for
determining the key factors of the disease spreading and for seeking the optimum strategies for preventing and controlling
the spread of infectious diseases [1–3]. Inmathematical modeling for influenza epidemics, susceptible–infected–recovered–
(re)susceptible (SIRS) compartmental model is usually a reasonable qualitative description of the evolutionary dynamics of
influenza A [4], SARS [5] and others.

In an effort to understand the protection measures and control polices in disease dynamics, Wang [5] proposed a general
epidemic model:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dS
dt

= dN − dS − β(I)S + νR,

dI
dt

= β(I)S − (d + r)I,

dR
dt

= rI − (d + ν)R,

(1)

where S, I and R denote the number of susceptible, infections and recovered individuals, respectively, and the population
size by N , i.e., N = S + I + R. The parameters d, r, ν are all non-negative constants, d is the per capita death rate, r the
recovery rate of infectious individuals, ν the rate of removed individuals who lose immunity and return to susceptible class.
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And β(I)S is the transmission of the infection or the incidence rate, which plays a key role in ensuring that the model does
give a reasonable description of the disease dynamics.

It is traditionally supposed that the incidence rate of disease (including SARS, influenza A) transmission is bilinear βSI or
standard βSI

S+I with respect to the number of susceptible individuals S(t) and the number of infective individuals I(t), here β
is the transmission rate [1]. As amatter of fact, it is generally difficult to get the details of transmission of infectious diseases,
which may vary under different conditions. In addition, choosing generalized incidence rate function may allow the data
themselves to flexibly decide the function form of incidence rates in practice [4]. Motivated by [5], β(I) can be factorized as
Ig(I), where g(I) satisfies following assumptions:

(H1) g(0) > 0, g(I) > 0 is bounded for I > 0; Ig(I) → k as I → ∞;
(H2) (Ig(I))′ > 0 for I > 0; there is an η > 0 such that g ′(I) > 0, I ∈ (0, η) and g ′(I) < 0, I ∈ (η,∞), and such that

g ′′(I) ≤ 0 for I ∈ (0, η).
Since the population size N is a constant C > 0, then model (1) becomes⎧⎪⎨⎪⎩

dI
dt

= Ig(I)(C − I − R) − (d + r)I,

dR
dt

= rI − (d + ν)R.
(2)

On the other hand, it is well known that the spatial component of ecological interactions has been identified as
an important factor in how ecological communities are functioning and shaped, yet understanding the role of space is
challenging both theoretically and empirically [6–8]. More recently, many studies, e.g., Refs. [9–13] and the references
therein, show that the spatial epidemic model is an appropriate tool for investigating the fundamental mechanism of
complex spatiotemporal epidemic dynamics.

Based on the discussions above, suppose that the infectious I and the recovered individuals Rmove randomly—described
as Brownian randommotion [14], and then we propose a simple spatial model corresponding to (2) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂ I
∂t

− d1∆I = Ig(I)(C − I − R) − (d + r)I, x ∈ Ω, t > 0,

∂R
∂t

− d2∆R = rI − (d + ν)R, x ∈ Ω, t > 0,

∂ I
∂n

=
∂R
∂n

= 0, x ∈ ∂Ω, t > 0,

I(x, 0) = I0(x) > 0, R(x, 0) = R0(x) ≥ 0, x ∈ Ω,

(3)

where Ω ⊂ Rn,n is the outward unit normal vector of the boundary ∂Ω and the homogeneous Neumann boundary
condition is being considered. The diffusion coefficients d1 and d2 are positive constants, and the initial data I0(x), R0(x)
are continuous functions.∆ is the Laplacian operator in Rn for n ≥ 1, which describes the Brownian randommotion.

The main focus of this paper is to study the dynamics of positive steady states of (3), and the steady states problem
corresponding to the following elliptic system:⎧⎪⎨⎪⎩

−d1∆I = Ig(I)(C − I − R) − (d + r)I, x ∈ Ω,

−d2∆R = rI − (d + ν)R, x ∈ Ω,
∂ I
∂n

=
∂R
∂n

= 0, x ∈ ∂Ω.

(4)

The rest of the paper is organized as follows. In Section 2, we study long time behavior of solutions of model (3), involving
the stability of the constant steady state of (2) and (4). In Section 3, we analyze the fundamental estimates of nonconstant
positive solutions and by using the energy method, we obtain various results of the nonexistence of nonconstant positive
solutions to (4). And in Section 4, the global structure of the steady state bifurcations from simple eigenvalues is established
by bifurcation theory, and the local structure of the steady state bifurcations from double eigenvalues is also obtained by the
techniques of space decomposition and implicit function theorem.

2. Long time behavior of the solutions

In this section, we will focus on the persistence property and stability of model (3).

2.1. Persistence property

First, we will show that any nonnegative solution I(x, t), R(x, t) of (3) lies in a certain bounded region as t → ∞ for all
x ∈ Ω . Motivated by [15, Proposition 3.1.], we can easily obtain the following lemma.
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