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a b s t r a c t

This report presents a stable and convergent finite element scheme for the approximate
deconvolution turbulencemodels (ADM). TheADM is a popular turbulencemodel intensely
studied lately but the computation of its numerical solution raises issues in terms of
efficiency and accuracy. This report addresses this question. The proposed scheme pre-
sented herein is based on a new interpretation of the ADM model recently introduced
by the author. Following this interpretation, the solution of the ADM is viewed as the
average of a perturbed Navier–Stokes system. The scheme uses the Crank–Nicolson time
discretization and the finite element spatial discretization and is proved to be stable and
convergent provided a moderate choice of the time step is made. Numerical tests to verify
the convergence rates and performance on a benchmark problem are also provided and
they prove the correctness of this approach to numerically solve the ADM.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

This report presents a stable and convergent scheme to solve the approximate deconvolution turbulence models (ADM
for short) numerically. The ADM have been introduced by Stolz, Adams and Kleiser in [1–3] and later studied and tested
in many papers such as [4–14], see also Layton and Rebholz, [15]. Their study and testing is motivated by the fact that the
simulation of turbulent flows based on the Navier–Stokes equations is not efficient computationally due to the large number
of degrees of freedom required by such simulations, [16]. The ADMaim at approximating averages of flow velocities, to allow
such simulations with much less degrees of freedom. The ADM is obtained from the Navier–Stokes equations

ut + u · ∇u + ∇p − ν∆u = f , inΩ × (0, T )
∇ · u = 0 , inΩ × (0, T )
u(0) = u0

to which a filtering operator w → w is applied, and under the assumption that filtering and differentiation will commute
(which is mathematically correct only in special conditions, such as periodic boundaries, see [17]) we obtain

ut + u · ∇u − ν∆u + ∇p = f.

To obtain the ADM, one may use a deconvolution operator D that has the property u ≈ Du (any method to solve the ill
posed problem of recovering u from uwould lead to such an operator) to write then

ut + Du · ∇Du − ν∆u + ∇p ≈ f.
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Such approximate deconvolution operators are the vanCittert deconvolution operators, [18], or themultiscale deconvolution
operators, [19]. The ADM is then given by

Wt + DW · ∇DW − ν∆W + ∇q = f (1)

and its solutionW is the approximation of average velocities uwhereas q is a pressure approximation. In most studies listed
above, the filtering operator that has been used is the Helmholtz filter (or the differential filter) [20]

Gu = u = (I − α2∆)−1u,

which is used in many other turbulence models as well, such as the Leray-α, modified Leray-α or NS-αmodels, [4–6,21–27].
This paper is concerned with the numerics of the ADM. Numerical schemes for the ADM model (1) have been proposed

and studied in [11,14,13,12].
One issue that has to be solved is that in Eq. (1) the nonlinear term

DW · ∇DW

in the discrete setting requires filtering a quantity (DW·∇DW)whose value on the boundary is not generally known (i.e.∇DW
is not known). Therefore the nonlinearity should by unfiltered in the numerical scheme. This is generally done by choosing
the test function (I − α2∆)v (instead of v) but this raises other issues (it increases the order of the resulting system).

In [11] the scheme is valid for N = 0 and the problem of filtering the nonlinear term is solved by casting the model into
a fourth order formulation. The paper [14] considers the two dimensional case, the model is again cast into a fourth order
formulation and the nonlinear term is treated explicitly (is lagged in the previous iteration). Up to now, it seems that the
most mathematically sound scheme for ADM is the reduced ADM algorithm presented and investigated by Rebholz and his
collaborators in [12,13], where the test function in (1) is set as (I − α2∆)v leading to the variational formulation

(Wt , v) + α2(∇Wt ,∇v) + (DW∇ · DW, v)
+ ν(∇W,∇(I − α2∆)v) + (p,∇ · v) = (f, v)

which, under the approximation assumption (I − α2∆)v ≈ Dv, will become the reduced ADMmodel studied in [12,13]:

(Wt , v) + α2(∇Wt ,∇v) + (DW∇ · DW, v)
+ ν(∆W,∇Dv) + (p,∇ · v) = (f, v).

For this modified ADM the nonlinearity does not have to be filtered and for the case D = DN with N = 1 (the first order
van Cittert deconvolution model) the authors proved the model is almost unconditionally stable (it requires a time step
restriction) and optimally convergent. In this case the averagesW that appear in DW are lagged in the previous iteration and
also, in the numerical scheme the resulting nonlinearity is linearized, therefore each time step requires only a linear solve
making the scheme very efficient computationally.

In this report it is presented a numerical scheme for the unmodified ADM. The scheme is based on a new interpretation
of the ADMwhich has been recently presented in [28]. Therein, the exact solutionW of the ADM (1) is proved to be precisely
the averageW = w of the solutionw of the model

wt + ∇ · Dw ⊗ Dw − ν∆w + ∇p = f, (2)

since upon filtering the above equation, it will become exactly the ADM with solutionw.
The above model (2), which is a perturbation of the NSE, is solved (for w, which is an approximation of the NSE solution

u) using the Crank–Nicolson scheme and then filtered to get w which will be the ADM approximation of the filtered NSE
solution u. In the sequel the model (2) will be quoted as the ADM model. Our numerical scheme uses the van Cittert
approximate deconvolution operators DN . The FEM analysis of the model (2) resembles the techniques used in [29] for
the Leray-deconvolution model and in [27] for the Navier–Stokes-α model. Numerical tests to confirm the predicted rates
are provided in the last section. A test on a benchmark problem, channel flow with two outlets and a contraction, is also
presented. Both show good results and motivate further investigation and testing of the presented scheme.

2. Mathematical context

This section presents several notations and standard concepts and properties that will be used in the analysis.Ω ⊂ Rd,
d = 2, 3, will denote a regular, bounded, polyhedral domain and we let ∥ · ∥ and (·, ·) denote the usual L2(Ω) norm and
inner product. ∥ · ∥Lp denotes the usual norm on the space Lp(Ω). Sobolev space are denoted byW k

p (Ω) with ∥ · ∥k norm and
|·|W k

p
standard semi-norm . Hk will denote the Sobolev spaceW k

2 with norm ∥ · ∥k. For vector valued functions the norms are
denoted by

∥v∥L∞(0,T ;Hk) := sup
0<t<T

∥v(t, ·)∥k , ∥v∥Lp(0,T ;Hk) :=

(∫ T

0
∥v(t, ·)∥p

k dt
)1/p

.
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