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a b s t r a c t

Diffusion-weighted imaging is an in vivo, non-invasive medical diagnosis technique that
uses the Brownian motion of water molecules to generate contrast in the image and there-
fore reveals exquisite details about the complex structures and adjunctive information of
its surrounding biological environment. Recent work highlights that the diffusion-induced
magnetic resonance imaging signal loss deviates from the classic monoexponential decay.
To investigate the underlying mechanism of this deviated signal decay, diffusion is re-
examined through the Bloch–Torrey equation by using fractional calculus with respect to
both time and space. In this study, we explore the influence of the complex geometrical
structure on the diffusion process. An effective implicit alternating directionmethod imple-
mented on approximate irregular domains is proposed to solve the two-dimensional time–
space Riesz fractional partial differential equation with Dirichlet boundary conditions. This
scheme is proved to be unconditionally stable and convergent. Numerical examples are
given to support our analysis. We then applied the proposed numerical scheme with some
decoupling techniques to investigate the magnetisation evolution governed by the time–
space fractional Bloch–Torrey equations on irregular domains.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

When water molecules interact with obstacles, such as myelin sheath, cell membranes and fibre bundles, they provide
significant information about the local physiological and anatomical environment in human brain tissue. Techniques based
on magnetic resonance imaging (MRI) provide an ideal platform to non-invasively characterise the diffusion properties of
water molecules and reveal important clinical information [1]. The mathematical principle underpinning the origin and
properties of the MRI signal is governed by the Bloch equations. The diffusion of water molecules gives rise to an additional
MR signal loss.With the consideration of the diffusion process, the basic principle for the dynamics of nuclear magnetisation
can be described by the Bloch–Torrey equations, which is defined as follows:

∂Mxy(r, t)
∂t

= λMxy(r, t) + D∇
2Mxy(r, t), (1)
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where λ = −iγ (r · G), γ is the gyromagnetic ratio, G is the magnetic field gradient, r is the coordinate; D is the diffusion
coefficient; and Mxy(r, t) is the transverse components of the magnetisation Mxy(r, t) = Mx(r, t) + iMy(r, t) with i =

√
−1.

Note that the T1 and T2 relaxation processes are neglected in Eq. (1) because we focus only on signal intensity changes due
to diffusion [2].

A considerable body of work has recently reported that the diffusion-induced MRI signal loss deviates from the
monoexponential attenuation derived from the Bloch–Torrey equations [3,4]. In light of obtaining a better description of
the diffusion-induced MRI signal, models are modified as biexponential or multi-exponential with distinct relaxation rates
by assuming signals can be compartmentalised [5,6]. Although better fitting to the experimental signal loss can be obtained,
these models may not provide a concrete and reliable interpretation of the MRI signal given the risk of over-fitting the data
and its sensitivity to noise [7]. More importantly, attempts to clarify the biophysical meaning of those models are rare due
to the complex and heterogeneous tissue environment [8,9].

As an alternative tool, fractional calculus has had growing success for describing the dynamical processes associatedwith
systemmemory and heterogeneity due to its endogenous nonlocal property, especially for complex systems [10,11]. There-
fore, some recent work has extended the Bloch–Torrey equations to include fractional dynamics through the replacement
of the integer derivatives with their fractional counterparts [12–14]. A time–space fractional order generalisation of the
Bloch–Torrey equations is given as

σ α−1C
0D

α
t Mxy(r, t) = λMxy(r, t) + Dµβ−2RβMxy(r, t), (2)

where σ andµ are parameters needed to preserve the units;α andβ are the time and space fractional orderswith 0 < α < 1
and 1 < β ≤ 2, respectively; and C

0D
α
t is the α (0 < α < 1) order Caputo fractional derivative with definition given by [10]

C
0D

α
t f (t) =

1
Γ (1 − α)

∫ t

0
f ′(τ )(t − τ )−αdτ .

In Eq. (2), the β-order (1 < β ≤ 2) two-dimensional Riesz fractional order operator is defined as Rβ
=

∂β

∂|x|β
+

∂β

∂|y|β
with

∂β

∂|x|β
(similar for ∂β

∂|y|β
) defined as [15]

∂βu(x, y, t)
∂|x|β

= −cβ (aDβ
x + xD

β

b )u(x, y, t),

where a < x < b, cβ =
1

2 cos(πβ/2) (β ̸= 1) and⎧⎪⎪⎨⎪⎪⎩
aDβ

x u(x, y, t) =
1

Γ (n − β)
∂n

∂xn

∫ x

a

u(x, y, t)
(x − ε)β+1−n dε,

xD
β

b u(x, y, t) =
1

Γ (n − β)
∂n

∂xn

∫ b

x

u(x, y, t)
(ε − x)β+1−n dε.

Many numerical methods have been proposed to deal with problems involving fractional order derivatives [16]. For
example, first order and second order approximations for the Riesz space fractional derivative can be obtained by using
the Grünwald–Letnikov derivative approximation scheme and fractional centred difference method respectively [17,18]. In
this work, we generalise these methods for the use on irregular domains. Ervin and Roop presented a theoretical framework
for the Galerkin finite elementmethod to the fractional advection dispersion equation [19]. Zeng et al. investigated a spectral
method for a two-dimensional fractional nonlinear reaction–diffusion equation [20]. Liu et al. proposed the finite volume
method for solving fractional diffusion equations [21–23]. Specific to the time–space fractional Bloch–Torrey equations, Yu
et al. proposed several different finite difference methods, including the alternating direction method in high dimensions,
and proved its stability and convergence [24–26]. Bu et al. considered the finite difference method in the temporal direction
and finite element method in the spatial direction to solve the time–space fractional Bloch–Torrey equations [27].

However, most proposed schemes are only considered in rectangular domains. Arbitrariness and irregularity of the
considered domain ubiquitously exist in many real-world problems, such as the human brain. In fact, the effects of simply
restricted diffusion have been preliminarily investigated on MR signal formation and lead to a quasi-two-compartment
behaviour of the MR signal [28]. Recently, the search for methods that consider the irregularity of the object domain
and fractional derivative to capture the spatial heterogeneity and system memory has been addressed [29]. In this work,
a finite difference method implemented on approximate irregular domains is proposed to investigate the time–space
fractional partial differential equation (PDE)withDirichlet boundary conditions and then extended to solve the Bloch–Torrey
equations.

The Riesz space fractional derivative operator ∂β

∂|x|β
on an approximate irregular domain is defined as [29]

∂uβ (x, y, t)
∂|x|β

= −cβ (xl(j)D
β
x + xD

β

xu(j))u(x, y, t),
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