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a b s t r a c t

In this paper, we present a two-scale finite element formulation, named Dynamic Diffusion
(DD), for advection–diffusion–reaction problems. By decomposing the velocity field in
coarse and subgrid scales, the latter is used to determine the smallest amount of artificial
diffusion to minimize the coarse-scale kinetic energy. This is done locally and dynamically,
by imposing some constraints on the resolved scale solution, yielding a parameter-free
consistent method. The subgrid scale space is defined by using bubble functions, whose
degrees of freedom are locally eliminated in favor of the degrees of freedom that live on the
resolved scales. Convergence tests on a two-dimensional example are reported, yielding
optimal rates. In addition, numerical experiments show that DD method is robust for a
wide scope of application problems.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Stabilized formulations have beenwidely used in finite element flow computations in the last forty years. The Streamline-
Upwind/Petrov–Galerkin (SUPG) formulations for incompressible and compressible flows [1–3] have become very popular
because of their well known desirable features. However, localized oscillations may remain in the neighborhood of sharp
layers for nonregular solutions. Many other methodologies were developed to circumvent this difficulty such as the
Galerkin/Least-Squares (GLS) [4,5] and the Unusual Stabilized Finite Element Method (USFEM) [6]. A review on a variety of
stabilizedmethods is presented in [7] for the advection-dominated reaction–diffusion equation, inwhich it is highlighted the
critical role of the parameters on stabilization and accuracy. Moreover, since SUPG-like formulations are not monotonicity
preserving methods, they all share the common flaw of not precluding spurious oscillations in the neighborhood of sharp
layers.

All SUPG-like formulations may be improved by adding discontinuity capturing (DC) terms [8], which ultimately add
some sort of artificial dissipation. DC terms are usually nonlinear, since they often depend on the approximate solution. As
an example, the Consistent Approximate Upwind Petrov–Galerkin (CAU) [9] is based on a systematic procedure to build
an approximate upwind direction towards which stabilization is introduced. This is done locally, at the discrete level,
depending on the residual of the approximate solution, and results in two stabilization terms: a linear term that controls the
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solution along the streamlines, and a nonlinear one that provides an artificial diffusion on the remaining directions. Other
discontinuity capturing methods presented in the literature are comprehensively studied and compared in [7,10]. Overall,
they depend on a suitable design of the stabilization parameters, usually two, for which there is no universal formula. The
design depends on the local Peclet number, which in turn depends on the discretization characteristic length, for which
again many definitions are possible.

In the mid-nineties, Hughes and co-workers have reformulated stabilized methods within the context of the Variational
Multiscale (VMS) framework [11–13]. The underlying idea of the VMS approach is the decomposition of the solution into
two-scales: a coarse scale (resolvedmesh scale) and the fine or subgrid scales. This allows the variational formof the problem
to be decomposed into two problems associated with each of these scales. The next step is to solve, approximate or model
the subgrid solution, and then incorporate it into the coarse scale problem, which ultimately yields an enriched problem
for the resolved scales. Many well known methods can be placed within this framework such as the residual free bubble
method [14], the multiscale finite element method (MFEM) [15], the subgrid scale methods [16–18] and the nonlinear
subgrid methods [19–21], to name a few of them. We call the latter group of methods as Dynamic Diffusion (DD) since
the dissipation mechanism is locally and dynamically introduced either on all scales or on the subgrid scale, to guarantee
stability of the resolved scale solution.

The principle of scale separation is also the focus of the DD method developed here, based on the concepts developed
in [21]. The latter is a discontinuous method that also takes into account the effective flux through inter-element edges
in order to keep the method consistency. We reformulate this method for a conforming setting and, like in [19–21], we
assume a two-level decomposition of the velocity field into the resolved (coarse) and unresolved (subgrid) scales. Unlike the
linear subgrid and the nonlinear methods developed in [16–18] and [19,20], respectively, in which the artificial diffusion
is introduced only onto the subgrid scales, the present DD method introduces a dynamic artificial diffusion onto both
the resolved and unresolved scales. The key issue is to establish the subgrid velocity which is used to determine the
smallest amount of artificial diffusion to dissipate the fine-scale kinetic energy such that the residual of the resolved
scale solution vanishes. The artificial diffusion, which is introduced onto all scales, is locally and dynamically determined
by imposing some restrictions on the resolved scale solution, which ultimately yields a parameter-free method and its
consistency property. Preliminary results indicate that thismethodology outperforms somediscontinuity capturingmethods
for transport problem [22] and also for compressible flow problems [23].

In this work, DD’s method small scale space is defined using bubble functions, whose degrees of freedom are con-
densed onto the resolved scale degrees of freedom. The methodology leads to a nonlinear scheme, which is solved by an
iteration-lagging procedure that utilizes the bubble-enriched Galerkin solution as the correspondent initial approximation.
Furthermore, we investigate different ways to represent the characteristic element length and their effect on the method’s
final accuracy and stability. The remainder of this work is organized as follows. Section 2 describes the proposed Dynamic
Diffusion formulation. Numerical experiments are conducted in Section 3 to show the method’s behavior for a variety of
problems and Section 4 concludes this paper.

2. The dynamic diffusion method

This paper is devoted to the numerical solution of the scalar advection–diffusion–reaction equation modeled by

− ϵ∆u + β · ∇u + σu = f inΩ, (1)

u = g on Γ , (2)

whereΩ ⊂ Rd is a bounded domain with a Lipschitz boundary Γ , u represents the quantity being transported (e.g. temper-
ature, concentration), ϵ > 0 is the (constant) diffusivity, β ∈ [L∞(Ω)]d is the velocity field satisfying ∇ · β = 0, σ ∈ L∞(Ω)
with σ ≥ 0 is the reaction coefficient, f ∈ L2(Ω) is the source term. From now on, we consider d = 2 for simplicity, although
the whole developed methodology is equally valid for d = 3. We adopt the standard notation for Sobolev spaces in which
∥ · ∥m denotes the standard norm on Hm(Ω), and (·, ·) denotes the L2(Ω) inner product (with H0(Ω) = L2(Ω)).

We consider a regular triangulation Th of the domain Ω into elements T . The standard Galerkin finite element method
for the problem (1)–(2) takes the form:

Find uh ∈ Vh such that B(uh, vh) = (f , vh), ∀vh ∈ V 0
h ,

B(uh, vh) =

∫
Ω

(ϵ∇uh · ∇vh + β · ∇uh vh + σuh vh) dΩ, (3)

(f , vh) =

∫
Ω

f vh dΩ. (4)

Here, without loss of generality, we define the discrete space Vh = {w ∈ H1(Ω) | w|T ∈ P1(T ), ∀T ∈ Th, w|Γ = g} and
V 0
h = Vh ∩ H1

0 (Ω) in which P1(T ) represents the set of first order polynomials in T . The bilinear form B(·, ·) is coercive in V 0
h ,

that is, there exists α > 0 such as

B(v, v) ≥ α∥v∥2
1, ∀v ∈ V 0

h , (5)
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