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a b s t r a c t

The purpose of this paper is to introduce a new condition

(C) α

∫ u

0
f (s)ds ≤ uf (u) + βu2

+ γ , u > 0

for some α, β, γ > 0 with 0 < β ≤
(α−2)λ0

2 , where λ0 is the first eigenvalue of
discrete Laplacian ∆ω , with which we obtain blow-up solutions to discrete semilinear heat
equations⎧⎨⎩ut (x, t) = ∆ωu (x, t) + f (u(x, t)), (x, t) ∈ S × (0, +∞) ,

u (x, t) = 0, (x, t) ∈ ∂S × [0, +∞) ,

u (x, 0) = u0 ≥ 0(nontrivial), x ∈ S

on a discrete network S. In fact, itwill be seen that the condition (C) improves the conditions
known so far.

© 2017 Elsevier Ltd. All rights reserved.

0. Introduction

These days, the reaction–diffusion systems have foundmany applications ranging from chemical and biological phenom-
ena tomedicine, genetics, and so on. A typical example of the reaction–diffusion system is an auto-catalytic chemical reaction
between several chemicals in which the concentration of each chemical grows (or decays) due to diffusion and difference of
concentration (according to Fick’s law, for example) and whose phenomena is modeled by the reaction–diffusion system

ut (x, t) =

∑
x∈S

[u (y, t) − u (x, t)]ω (x, y) + uq (x, t) , (x, t) ∈ S × (0, ∞) (1)

with some boundary and initial conditions where S is the set of chemicals.
From a similar point of view, we discuss,in this paper, the blow-up property of solutions to the following discrete

semilinear heat equations⎧⎨⎩ut (x, t) = 1ωu(x, t) + f (u(x, t)), (x, t) ∈ S × (0, +∞),
u(x, t) = 0, (x, t) ∈ ∂S × [0, +∞),
u(x, 0) = u0(x) ≥ 0, x ∈ S,

(2)

which generalizes Eq. (1) and where 1ω denotes the discrete Laplacian operator (which will be introduced in Section 1).
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The continuous case of this equation has been studied by many authors. For example, in 1973, Levine [1] considered the
formally parabolic equations of the form⎧⎨⎩P

du
dt

= −A(t)u + f (u(t)), t ∈ [0, +∞),

u(0) = u0,

where P and A(t) are positive linear operators defined on a dense subdomain D of a real or complex Hilbert space H . Here,
he first introduced the concavity method and proved that there exists a time T such that

lim
t→T−

∫ t

0

∫
Ω

u(x, s)P(u(x, s))dxds = +∞,

under the condition

(A) (2 + ϵ)F (u) ≤ uf (u), u > 0,

for some ϵ > 0 and the initial data u0 satisfying
1
2

∫
Ω

u0(x) · A(0)[u0(x)]dx +

∫
Ω

F (u0(x))dx > 0,

where F (u) =
∫ u
0 f (s)ds.

After this, Philippin and Proytcheva [2] have applied the above method to the equations{ut = 1u + f (u), in Ω × (0, +∞),
u(x, t) = 0, on ∂Ω × (0, +∞),
u(x, 0) = u0(x) ≥ 0,

(3)

and obtained a blow-up solution, under the condition (A) and the initial data u0 satisfying

−
1
2

∫
Ω

|∇u0(x)|2dx +

∫
Ω

F (u0(x))dx > 0.

Recently, Ding and Hu [3] adopted the condition (A) to get blow-up solutions to the equation

(g(u))t = ∇ · (ρ(|∇u|2)∇u) + k(t)f (u)

with the nonnegative initial value and the null Dirichlet boundary condition.
Besides, in [4,5] Payne et al. obtained the blow-up solutions to the equations⎧⎪⎪⎨⎪⎪⎩

ut = 1u − g(u), in Ω × (0, +∞),
∂u
∂n

= f (u), on ∂Ω × (0, +∞),

u(x, 0) = u0(x) ≥ 0,

(4)

when the Neumann boundary data f satisfies the condition (A).
On the other hand, the condition (A) was relaxed by Bandle and Brunner [6] and has been applied to the equations{ut = 1u + f (x, t, u, ∇u), in Ω × (0, +∞),

u(x, t) = 0, on ∂Ω × (0, +∞),
u(x, 0) = u0(x) ≥ 0.

(5)

In fact, they introduced a condition

(B) (2 + ϵ)F (u) ≤ uf (u) + γ , u > 0

and derived the blow-up solutions to Eq. (5), under the condition (B) and the initial data u0 satisfying

−
1
2

∫
Ω

|∇u0(x)|2dx +

∫
Ω

[F (x, u0) − γ ]dx > 0,

for some ϵ > 0.
Looking into the concavity method more closely, we can see that the proof consists of a series of inequalities with

reasoning and the Poincare inequality including the eigenvalue. But the conditions (A) and (B) above are independent of the
eigenvalue which depends on the domain. From this observation, we can expect to develop an improved condition which
refines (A) or (B), depending on the domain. Being motivated by this point of view, we develop a new condition as follows:
for some α, β, γ > 0,

(C) αF (u) ≤ uf (u) + βu2
+ γ , u > 0,

where 0 < β ≤
(α−2)λ0

2 and λ0 is the first eigenvalue of the discrete Laplacian 1ω . Here, we note that the term βu2 is
depending on the domain graph.
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