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a b s t r a c t

In the past few years, a number of numerical and symbolic algorithms for evaluating the
determinants of cyclic pentadiagonal matrices have been developed. In this paper, we
present a fast numerical algorithm for the determinant of an n-by-n cyclic pentadiagonal
matrix with Toeplitz structure. The algorithm is based upon a certain type of matrix
reordering and partitioning, and linear transformation. Some numerical examples are
provided, and the results are comparedwith the ones obtained viaMatlab built-in function
and twoexisting algorithms. All of the numerical experiments are performedon a computer
with the aid of programs written in Matlab.
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1. Introduction

We consider the determinant of an n-by-n cyclic pentadiagonal Toeplitz matrix of the form

Pn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ Rn×n, (1.1)

where we assume that n ≥ 5 and c ̸= 0. In fact, one may use the arguments given in this paper to obtain similar results
when c = 0. This type of matrix often appears in boundary value problems (BVPs), quintic spline problems, fluid mechanics,
parallel computing, and numerical solution of ordinary and partial differential equations (ODEs and PDEs), especially because
the discretization of second-order linear differential equations with periodic boundary conditions, transforming them into
finite-difference equations, often results in the cyclic pentadiagonal matrices, see [1–4]. Two important examples of the
second-order differential equations that frequently arise in chemical engineering are Bessel’s equation

x2y′′
+ xy′

+ (x2 − n2)y = 0,
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and the confluent hypergeometric equation

xy′′
+ (c − x)y′

− ay = 0,

see [5] for details. Moreover, in paper [6], a sixth-order uniform mesh difference scheme using sextic splines for solving a
self-adjoint singularly perturbed two-point boundary-value problem arising in the study of chemical reactor theory, of the
form {

−εu′′
+ p(x)u = f (x), p(x) > 0,

u(0) = α0, u(1) = α1,

is derived. And, the proposed scheme leads to a nearly pentadiagonal Toeplitz matrix which is a special case of the cyclic
pentadiagonal Toeplitz matrix (1.1).

It is widely known that a fast and reliable algorithm for computing a square matrix is linked to the problem of obtaining
efficient test for the existence of unique solution of the corresponding linear system. Recently, some authors have devised fast
computational algorithms for evaluating the cyclic pentadiagonal determinants [7–10]. In this paper, we show that a more
efficient numerical algorithm is derived from the use of our framework [9] and the linear transformation given in [11,12].

The cyclic pentadiagonal Toeplitz matrix includes some important classes of matrices such as the pentadiagonal Toeplitz
matrix [13–15] and the periodic tridiagonal Toeplitz matrix [16–18]. For related works such as computing the determinants,
inverse, and eigenvalues of general (cyclic) pentadiagonal matrices, see [19–24] and the references therein. For recent
developments of algorithms for the determinants and permanents of other sparse matrices, see e.g. [25,26].

The rest of this paper is organized as follows. In Section 2,we review theDETQPT algorithm [7] and theDCPT algorithm [8],
and provide a comparison of the computational cost between these two algorithms. In Section 3, we present a more
efficient algorithm based on a certain type of matrix reordering, matrix partitioning, and linear transformation. Also, the
computational complexity of the proposed algorithm is discussed. In Section 4, we report the experimental results of two
representative numerical examples for the sake of illustration. Finally, we make some conclusions in Section 5.

2. DETQPT algorithm and DCPT algorithm

In this section, we describe two existing algorithms for the determinants of cyclic pentadiagonal Toeplitz matrices. First,
we give the DETQPT algorithm below.

Algorithm 2.1 (DETQPT algorithm [7])
Step 1. Input a, b, c , d, e and n.

Step 2. Set m1 = −
a
c
, m2 = −

d + am1

c
, m3 = −

b + dm1 + am2

c
, m4 =

−
e + bm1 + dm2 + am3

c
.

For i = 5, 6, . . . , n − 3 compute

mi = −
emi−4 + bmi−3 + dmi−2 + ami−1

c
,

End
Form the following 2-by-2 matrices

S =

[
emn−6 + bmn−5 + dmn−4 + amn−3 emn−7 + bmn−6 + dmn−5 + amn−4

emn−5 + bmn−4 + dmn−3 emn−6 + bmn−5 + dmn−4

]
.

Step 3. Set r1 =
1
c
, r2 = −

a
c
r1, r3 = −

dr1 + ar2
c

, r4 = −
br1 + dr2 + ar3

c
.

For i = 5, 6, . . . , n compute

ri = −
eri−4 + bri−3 + dri−2 + ari−1

c
,

End
Form the following 4-by-4 matrix

T =

⎡⎢⎣ t1,1 t1,2 t1,n−3 t1,n−2
t2,1 t2,2 t2,n−3 t2,n−2

tn−3,1 tn−3,2 tn−3,n−3 tn−3,n−2
tn−2,1 tn−2,2 tn−2,n−3 tn−2,n−2

⎤⎥⎦ ,
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