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a b s t r a c t

In this paper, a generalized conjugate direction (GCD) method for finding the generalized
Hamiltonian solutions of a class of generalized coupled Sylvester-conjugate transpose
matrix equations is proposed. Furthermore, it is proved that the algorithm can compute the
least Frobenius norm generalized Hamiltonian solution group of the problem by choosing a
special initial matrix group within a finite number of iterations in the absence of round-off
errors. Numerical examples are also presented to illustrate the efficiency of the algorithm.
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1. Introduction

The special solution ofmatrix equations has raisedmuch interest among researchers due to thewide applications such as
robust control, neural network, singular system control, model reduction and image processing [1–4]. For example, we need
to solve the (coupled) Sylvester matrix equations over symmetric matrices when finite element techniques are designed
to model the vibrating structures such as highways, bridges, buildings and automobiles, for details see [5–9]. In [10], the
generalized eigenvalue problems lead to attention of the solution pair (X, Y ) of the generalized coupled Sylvester matrix
equations{

AX − YB = C,

DX − YE = F .

So far, many researches are devoted to the special solutions of several matrix equations. Li, H. et al. (see [11]) considered the
least squares solution of the generalized Sylvester matrix equations

AXB + CYD = E. (1.1)
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Furthermore, M. Hajarian (see [12]) proposed the CGLS algorithm for least squares solutions of the generalized Sylvester-
transpose matrix equations

s∑
i=1

AiXBi +

l∑
j=1

CjXTDj = E. (1.2)

Least Squares Solution of Linear Operator Equations was also investigated (see [13]).
Ding and Chen (see [14,15]) considered gradient based iterative algorithms to solve the generalized couple Sylvester

matrix equations. In [16–20], the matrix form of CGS, Bi-CGSTAB, BICOR and QMRCGSTAB was presented. Dehghan and
Hajarian [4] considered the generalized coupled Sylvester matrix equations

l∑
i=1

AiXBi +

l∑
i=1

CiYDi = M. (1.3)

and
l∑

i=1

EiXFi +
l∑

i=1

GiYHi = N. (1.4)

In [21], the author constructed a conjugate direction method for the generalized nonhomogeneous Yakubovich-transpose
matrix equation

AXB + CXTD + EYF = R, (1.5)

and obtained the (least Frobenius norm) solution pair (X, Y ).
Recently, some extended conjugate gradient algorithms are investigated for solving various matrix equations over

symmetric (antisymmetric), reflexive (irreflexive) and generalized bisymmetric matrices [22–26]. Masoud Hajarian in [27]
focused on the symmetric solution group of the general coupled matrix equations

m∑
j=1

AijXjBij = Ci, i = 1, 2, . . . , n, (1.6)

where Aij ∈ Rpi×nj , Bij ∈ Rnj×qi , Ci ∈ Rpi×qi and Xj ∈ Rnj×nj for i = 1, 2, . . . , n and j = 1, 2, . . . ,m.
Motivated by [27], this paper first investigates the generalized coupled Sylvester-conjugate transpose matrix equations

as follows
l∑

j=1

(
AijXjBij + CijXH

j Dij

)
= Ei, i = 1, 2, . . . , s, (1.7)

where Aij, Cij ∈ Cm×n, Bij,Dij ∈ Cn×r and Ei ∈ Cm×r , i = 1, 2, . . . , s, j = 1, 2, . . . , l, are given matrices and Xj ∈ Cn×n, j =

1, 2, . . . , l, are unknown matrices to be determined. Eq. (1.7) has wide applications in many fields, such as in vibration and
structural analysis, robotics control and spacecraft control. Especially, it is very important for obtaining the least Frobenius
norm generalized Hamiltonian solution group of the problem (1.7). Hence, we present a generalized conjugate direction
method (CD algorithm) for solving Eq. (1.7) over generalized Hamiltonian matrix.

The rest of this paper is organized as follows: In Section 2, we present the generalized conjugate direction method (GCD
method) to solve the generalized coupled Sylvester-conjugate transpose matrix equations (1.7) as the system is consistent.
The convergence properties of the GCD method are reported later; In Section 3, we give a special choice of initial matrix
group and show that the least Frobenius norm generalized Hamiltonian solutions can be obtained consequentlywithin finite
iterative steps in the absence of roundoff error; Some numerical results are reported in Section 4; The conclusions are given
in Section 5 at last.

In our notation, let Rm×n and Cm×n be the sets of all real and complex m × n matrices, respectively. Let A ∈ Cm×n, we
write Re(A), Im(A), A, AT , AH , ∥A∥F , A−1, and R(A) to denote the real part, imaginary part, conjugation, transpose, conjugate
transpose, Frobenius norm, inverse, and the column spaces ofmatrixA, respectively. For anymatrixA = (aij), B = (bij),matrix
A
⨂

B denotes the Kronecker product defined as A
⨂

B = (aijB). For the matrix X = (x1, x2, . . . , xn) ∈ Cn×n, vec(X) denotes
the vec operator defined as vec(X) = (xT1, x

T
2, . . . , x

T
n )

T
∈ Cmn. Let ASORm×m stand for the sets of all m × m antisymmetric

orthogonal matrices, i.e.,

ASORm×m
= {J|JT J = JJT = Im, J = −JT , J ∈ Rm×m

}.

In the space Cm×n, the inner product can be defined as

⟨A, B⟩ = Re[tr(AHB)]. (1.8)



Download English Version:

https://daneshyari.com/en/article/6892321

Download Persian Version:

https://daneshyari.com/article/6892321

Daneshyari.com

https://daneshyari.com/en/article/6892321
https://daneshyari.com/article/6892321
https://daneshyari.com

