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a b s t r a c t

In this paper, we employ asymptotic analysis to determine information about small volume
defects in a known anisotropic scattering medium from far field scattering data. The
location of the defects is reconstructed via theMUSIC algorithm from the range of themulti-
static responsematrix derived from the asymptotic expansion of the far field pattern in the
presence of small defects. Since the same data determines the transmission eigenvalues
corresponding to the perturbed media, we investigate how the presence of the defects
changes the transmission eigenvalues and use this information to recover the strength of
the small defects. We provide convergence results on transmission eigenvalues as the size
of the defects tends to zero as well as derive the first correction term in the asymptotic
expansion of the simple transmission eigenvalues. Numerical examples are presented to
show the viability of our imaging method.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The imaging of anisotropic media from scattering data is a challenging problem mainly due to the non-uniqueness
issue [1]. Yet, in many applications in medical imaging and non-destructive testing, the scattering media exhibit anisotropic
properties in the interactionwith probingwaves. The so-called qualitativemethods in inverse scattering [2] provide imaging
techniques to obtain information on changes in material properties of a known anisotropic media. This work concerns the
imaging of small volume (possibly anisotropic) perturbations of a known anisotropic inhomogeneousmedia in acousticwave
propagation (for the case of R3) or specially polarized electromagnetic wave propagation (for the case of R2). Combining
asymptotic analysis with MUSIC and the related transmission eigenvalue problem we derive a range test for the location
of small perturbations and computable formulas that provide information about the strength (involving the contrast and
geometrical features) of the small perturbation. There is a vast literature on the MUSIC algorithm for a variety of scattering
problems [3–7] and we recall here its formulation for the anisotropic inhomogeneous media. The asymptotic analysis of the
transmission eigenvalue problem for isotropic media is studied in [8] and [9]. One of the main contributions of this study is
the asymptotic analysis of the transmission eigenvalue problem for anisotropicmediawith the first order correction term for
the perturbation of the eigenvalues. Note that the transmission eigenvalue problem is non-linear and non-selfadjoint, and
the mathematical structure of this problem for anisotropic media is different from the isotropic case. In addition, we show
how to use the asymptotic expansion for the perturbation of transmission eigenvalues together with the MUSIC algorithm
to image small volume perturbations of anisotropic media.

Let us now precisely formulate the problem under consideration. To this end let D ⊂ Rd (for d = 2 or 3) be a bounded
domain with piecewise smooth boundary which denotes the support of the anisotropic media to be tested. The real valued
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symmetric matrix A(x) ∈ C1(D,Rd×d) with smooth entries and the smooth function n ∈ C1(D) represent the constitutive
parameters for the unperturbed (‘‘healthy’’) anisotropic media. Without loss of generality we assume that outside the
scatterer D the background media has refractive index scaled to one, i.e. A(x) = I and n(x) = 1 in x ∈ Rd

\ D, where I
denotes the identity matrix. We define

Ab(x) =

{
I x ∈ Rd

\ D
A(x) x ∈ D and nb(x) =

{
1 x ∈ Rd

\ D
n(x) x ∈ D.

Now the scattering of a time harmonic incident plane wave eikx·ŷ with incident direction ŷ ∈ S by the unperturbed media
(i.e. without defects) is mathematically formulated as: find ub ∈ H1

loc(R
d) with ub = us

b + eikx·ŷ such that

∇ · Ab(x)∇ub + k2nb(x)ub = 0 in Rd (1)

lim
r→∞

r
d−1
2

(
∂us

b

∂r
− ikus

b

)
= 0, (2)

where S denotes the unit circle/sphere, r = |x|, and the Sommerfeld radiation condition (2) is satisfied uniformly with
respect to x̂ = x/|x|. Here ub is the total field in the background (including the homogeneous part and the media of compact
support D) and us

b is the scattered field due to the region D. Recall that the scattered radiating field us
b(·, ŷ), which depends

on the incident direction ŷ, has the following asymptotic expansion [10]

us
b(x, ŷ) =

eik|x|

|x|
d−1
2

{
u∞

b (x̂, ŷ) + O
(

1
|x|

)}
as |x| → ∞ (3)

where x̂ := x/|x|, and u∞

b (x̂, ŷ), which depends on the incident direction ŷ and observation direction x̂, is the corresponding
far field pattern. Nowwe consider the small defective regions that are given by zm + εBm where Bm is a smooth deformation
of a ball centered at the origin. Let Am and nm be constant constitutive parameters for the defective regions given by zm +εBm
and assume that

|zi − zj| ≥ c0 > 0 for all i ̸= j with i, j = 1, 2, . . . ,M and
dist(zm, ∂D) ≥ c0 > 0 for allm = 1, 2, . . . ,M.

The union of the defective regions is denoted by Dε =
⋃M

m=1(zm + εBm) and we let

Aε(x) =

{
Am x ∈ (zm + εBm)

Ab(x) x ∈ Rd
\ Dε

and nε(x) =

{
nm x ∈ (zm + εBm)

nb(x) x ∈ Rd
\ Dε.

The scattering problem for the media with the defective region Dε now reads: find uε ∈ H1
loc(R

d) with uε = us
ε + eikx·ŷ such

that

∇ · Aε(x)∇uε + k2nε(x)uε = 0 in Rd (4)

lim
r→∞

r
d−1
2

(
∂us

ε

∂r
− ikus

ε

)
= 0. (5)

Similarly since us
ε is a radiating solution to the Helmholtz equation in Rd

\ D, it assumes a similar asymptotic expansion as
(3), and we denote by u∞

ε (x̂, ŷ) its corresponding far field pattern. In this study we assume that the media is non-absorbing,
and infx∈Dn(x) = n0 > 0, nm > 0, and

inf
x∈D

inf
|ξ |=1

ξ · A(x)ξ = Amin > 0 and sup
x∈D

sup
|ξ |=1

ξ · A(x)ξ = Amax < ∞. (6)

For later use let us denote

min
m=1 ...M

inf
|ξ |=1

ξ · Amξ = amin > 0 and max
m=1 ...M

sup
|ξ |=1

ξ · Amξ = amax < ∞. (7)

The inverse problemwe consider here is to determine the location {zm}m=1,M of the perturbations and information about Am
and nm from knowledge of u∞

ε (x̂, ŷ) for several x̂, ŷ ∈ S, provided that Ab(x) and nb(x) are known.
In general, the support Dϵ of the defects can be determined from the far field operator

(Fg)(x̂) =

∫
S

[
u∞

ε (x̂, ŷ) − u∞

b (x̂, ŷ)
]
g(ŷ) dŷ x̂ ∈ S (8)

via the factorizationmethod [11]. In addition, it iswell-known [2] that the far field operator F determines the real transmission
eigenvalueswhich are defined below.
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