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a b s t r a c t

We prove a posteriori upper and lower bounds for the error estimates when solving the
Laplace–Beltrami equation on the unit sphere by using the Galerkinmethodwith spherical
splines. Adaptive mesh refinements based on these a posteriori error estimates are used
to reduce complexity and computational cost of the corresponding discrete problems. The
theoretical results are corroborated by numerical experiments.
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1. Introduction

Partial differential equations on the sphere have many applications, for example in weather forecasting models and
geophysics; see e.g. [1–3]. Efficient solutions to these equations have become more and more demanding when satellites
have been launched into the space to collect data. In this paper, we consider the model equation

−1Su + ω2u = f on S, (1.1)

where 1S is the Laplace–Beltrami operator, ω is some nonzero real constant and S is the unit sphere in R3, that is, S ={
x ∈ R3

: |x| × = 1
}
. Here, |·| denotes the Euclidean norm. This elliptic equation arises, for example, when one discretizes

in time the diffusion equation on the sphere.
When solving the Laplace–Beltrami equation on the unit sphere, tensor products of univariate splines are not a good

choice if data locations are not spaced over a regular grid. Spherical radial basis functions seem to be a better choice
[4]; however, the resulting matrix systems from this approximation are very ill-conditioned. Another alternative is to use
spherical splines, which are piecewise homogeneous polynomials defined on spherical triangulations.

Sharing many properties in common with classical polynomial splines over planar triangulations, spherical splines [5–7]
are well suited for scattered data interpolation and approximation problems. Baramidze and Lai [8] use these functions
to solve the Laplace–Beltrami equation on the unit sphere in R3. Pham et al. later use these functions to solve general
pseudodifferential equations on the unit sphere, see [9]. A priori error estimate is proved when solving the equation by
using the Galerkin method with spherical splines,

∥e∥H1(S) ≤ Chs−1
∥u∥Hs(S) ,

where s ≥ 1 and C is a constant which is independent of the mesh size h and the exact (unknown) solution u. The a priori
error estimate reveals the rate of convergence but is of limited use if one requires a numerical estimate of the accuracy. The
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difficulty is that either the exact solution u and its higher derivatives are unknown or bounds for the constant C are not
available.

A posteriori error estimates can meanwhile provide numerical estimates of accuracy in terms of the source term and
discrete solutions. In this paper, we shall prove a posteriori upper and lower bounds for the errors when solving the
Laplace–Beltrami equation on the unit sphere by using Galerkin method with spherical splines. Based on these a posteriori
estimates in which approximation errors are bounded (from above and below) by local error estimators, we suggest the
use of adaptive mesh refinements to produce better approximate spaces. This results in a significant reduction in required
degrees of freedom and computation time while preserving approximate accuracy.

The structure of the paper is as follows. In Section 2, we review spherical splines, introduce the Sobolev spaces on the
unit sphere to be used, present the quasi-interpolation operator and the Laplace–Beltrami equation. The proof for an a
posteriori upper bound for the error estimate is presented in Section 3 followed by the proof for a lower bound in Section 4.
In Section 5, we discuss a simple adaptive mesh refinement algorithm based on these a posteriori error estimates. The final
section (Section 6) presents our numerical experiments which illustrate our theoretical results.

In this paperC andCi, for i = 1, . . . , 5, denote generic constantswhichmay take different values at difference occurrences.

2. Preliminaries

In this section, we first review spherical splines [5–7] and introduce our functional spaces on the unit sphere S ⊂ R3.
Then the quasi-interpolation operator and the Laplace–Beltrami equation will be discussed.

2.1. Spherical splines

Let {v1, v2, v3} be linearly independent vectors in R3. The trihedron T generated by {v1, v2, v3} is defined by

T = {v ∈ R3
: v = b1v1 + b2v2 + b3v3 with bi ≥ 0, i = 1, 2, 3}.

The intersection τ = T ∩ S is called a spherical triangle. Let T = {τi : i = 1, . . . , T } be a set of spherical triangles. Then T is
called a spherical triangulation of the sphere S if there hold

1.
⋃T

i=1 τi = S,
2. each pair of distinct triangles in T is either disjoint or shares a common vertex or an edge.

Let Πd denote the space of trivariate homogeneous polynomials of degree d in R3. The space of restrictions on the unit
sphere S of all polynomials inΠd is denoted byΠd(S). Similarly, we also denote by Pd and Pd(S) the spaces of polynomials
of degree d in R3 and on S, respectively. We define Srd(T ) to be the space of piecewise homogeneous splines of degree d and
smoothness r on a spherical triangulation T , that is,

Srd(T ) = {s ∈ C r (S) : s|τ ∈ Πd, τ ∈ T }.

Throughout this paper, we always assume that{
d ≥ 3r + 2 if r ≥ 1
d ≥ 1 if r = 0

holds; see [5–7].
For a spherical triangle τ with vertices v1, v2, and v3, let b1,τ (v), b2,τ (v), and b3,τ (v) denote the spherical barycentric

coordinates as functions of v in τ , i.e.,

v = b1,τ (v)v1 + b2,τ (v)v2 + b3,τ (v)v3.

We define the homogeneous Bernstein basis polynomials of degree d relative to τ to be the polynomials

Bd,τ
ijk (v) =

d!
i!j!k!

b1,τ (v)ib2,τ (v)jb3,τ (v)k, i + j + k = d.

As was shown in [5], we can use these polynomials as a basis forΠd.
A spherical cap centered at x ∈ S and having radius R is defined by

C(x, R) = {y ∈ S : cos−1(x · y) ≤ R}.

For any spherical triangle τ , let |τ | denote the diameter of the smallest spherical cap containing τ , andρτ denote the diameter
of the largest spherical cap contained in τ . We define

|T | = max{|τ | : τ ∈ T } and ρT = min{ρτ : τ ∈ T },

and refer to |T | as the mesh size. Our triangulations are said to be regular if for some given β > 1, there holds

|τ | ≤ βρτ ∀τ ∈ T (2.1)
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